We consider a nonlinear parametric Neumann problem driven by the sum of a p-Laplacian and of a q-Laplacian and exhibiting in the reaction the competing effects of a singular term and of a resonant term. Using variational methods together with suitable truncation and comparison techniques, we show that for small values of the parameter the problem has at least two positive smooth solutions.
Papageorgiou N.S., Vetro C., Vetro F. (2020). Singular Neumann (p, q)-equations. POSITIVITY, 24(4), 1017-1040 [10.1007/s11117-019-00717-w].
Singular Neumann (p, q)-equations
Vetro C.;
2020-01-01
Abstract
We consider a nonlinear parametric Neumann problem driven by the sum of a p-Laplacian and of a q-Laplacian and exhibiting in the reaction the competing effects of a singular term and of a resonant term. Using variational methods together with suitable truncation and comparison techniques, we show that for small values of the parameter the problem has at least two positive smooth solutions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2020_Positivity_PapageorgiouVetroVetro.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
398.96 kB
Formato
Adobe PDF
|
398.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10447_430042-post-print.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
348.37 kB
Formato
Adobe PDF
|
348.37 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.