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SINGULAR NEUMANN (p, q)-EQUATIONS

NIKOLAOS S. PAPAGEORGIOU1, CALOGERO VETRO2, FRANCESCA VETRO3

Abstract. We consider a nonlinear parametric Neumann problem driven by the sum of a p-
Laplacian and of a q-Laplacian and exhibiting in the reaction the competing effects of a singular
term and of a resonant term. Using variational methods together with suitable truncation and
comparison techniques, we show that for small values of the parameter the problem has at least
two positive smooth solutions.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study the following
parametric Neumann (p, q)-equation:

(Pλ)

−∆pu(z)−∆qu(z) + ξ(z)u(z)p−1 = λu(z)−γ + f(z, u(z)) in Ω,
∂u

∂n
= 0 on ∂Ω, u ≥ 0.

For r ∈ (1,+∞) by ∆r we denote the r-Laplace differential operator defined by

∆ru = div(|∇u|r−2∇u) for all u ∈ W 1,r(Ω).

In problem (Pλ) we have 1 < q < p < +∞, ξ ∈ L∞(Ω) with ξ(z) ≥ 0 for a.a. z ∈ Ω. In the
reaction (right hand side), λ > 0 is a parameter and λu−γ is a singular term with 0 < γ < 1. The
perturbation f(z, x) is a Carathéodory function (that is, for all x ∈ R, z → f(z, x) is measurable
and for a.a. z ∈ Ω, x → f(z, x) is continuous) and we assume that f(z, ·) exhibits (p − 1)-linear

growth near +∞ and it can be resonant with respect to the principal eigenvalue λ̂1 > 0 of the
differential operator u → −∆pu + ξ(z)up−1 with Neumann boundary condition. So, the reaction
of problem (Pλ) exhibits the competing effects of singular and resonant terms. In the boundary

condition
∂u

∂n
denotes the outward normal derivative of u.
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We look for positive solutions. Using variational tools based on the critical point theory, together
with truncation, perturbation and comparison techniques, we show that for λ > 0 small, problem
(Pλ) has at least two positive smooth solutions.

Singular problems were studied primarily in the context of Dirichlet equations, driven by the
Laplacian or p-Laplacian. In this direction we mention the works of Gasiński-Papageorgiou [5],
Giacomoni-Schindler-Takáč [6], Hirano-Saccon-Shioji [7], Kyritsi-Papageorgiou [8], Lair-Shaker
[9], Papageorgiou-Rǎdulescu [14], Papageorgiou-Rǎdulescu-Repovš [17], Papageorgiou-Smyrlis [18],
Perera-Zhang [20], Sun-Wu-Long [22]. To the best of our knowledge there are no papers dealing
with singular (p, q)-equations. We mention that (p, q)-equations arise in problems of mathematical
physics (see Cherfils-Il′ yasov [3]) and recently attracted considerable interest. We mention the
survey paper of Marano-Mosconi [11] and the recent work of Papageorgiou-Vetro [19] for equations
with variable exponents. The interested reader can find additional references in them.

2. Mathematical Background, Hypotheses, Auxiliary Results

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality brackets
for the pair (X∗, X). Given ϕ ∈ C1(X,R), we say that ϕ satisfies the “Cerami condition” (the
“C-condition” for short), if it has the following property:

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and (1 + ‖un‖)ϕ′(un)→ 0
in X∗ as n→ +∞, admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ϕ(·) which compensates for the fact that
the ambient space X need not be locally compact (being in general infinite dimensional). Using
this condition one can prove a deformation theorem from which follows the minimax theory of
the critical values of ϕ. One of the main results of this theory is the “mountain pass theorem” of
Ambrosetti-Rabinowitz [2].

Theorem 1. If ϕ ∈ C1(X,R) satisfies the C-condition, u0, u1 ∈ X, 0 < ρ < ‖u1 − u0‖,
max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ‖u − u0‖ = ρ} = mρ and c = infγ∈Γ max0≤t≤1 ϕ(γ(t)) with
Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}, then c ≥ mρ and c is a critical value of ϕ (that is,
there exists û ∈ X such that ϕ(û) = c, ϕ′(û) = 0).

The Sobolev space W 1,p(Ω) and the Banach space C1(Ω) are the main spaces in the analysis of
problem (Pλ). By ‖ · ‖ we denote the norm of W 1,p(Ω) given by

‖u‖ =
[
‖u‖pp + ‖∇u‖pp

]1/p
for all u ∈ W 1,p(Ω).

The Banach space C1(Ω) is an ordered Banach space with positive (order) cone given by

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

In fact D+ is also the interior of C+ when C1(Ω) is furnished with the relative C(Ω)-norm topology.
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For any r ∈ (1,+∞), let Ar : W 1,r(Ω)→ W 1,r(Ω)∗ be the nonlinear map defined by

〈Ar(u), h〉 =

∫
Ω

|∇u|r−2(∇u,∇h)RNdz for all u, h ∈ W 1,r(Ω).

From Motreanu-Motreanu-Papageorgiou [13] (p. 40), we have:

Proposition 1. The map Ar : W 1,r(Ω) → W 1,r(Ω)∗ is bounded (that is, maps bounded sets to
bounded sets), continuous, strictly monotone (hence maximal monotone too) and of type (S)+

(that is, if un
w−→ u in W 1,r(Ω) and lim sup

n→+∞
〈Ar(un), un − u〉 ≤ 0, then un → u in W 1,r(Ω)).

We impose the following conditions on the potential function:

H(ξ): ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω and the inequality is strict on a set of positive measure.

Lemma 1. If hypothesis H(ξ) holds, then there exists c0 > 0 such that

c0‖u‖p ≤ ‖∇u‖pp +

∫
Ω

ξ(z)|u|pdz = µp(u) for all u ∈ W 1,p(Ω).

Consider the following nonlinear Neumann eigenvalue problem:

(1)

−∆pu(z) + ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in Ω,
∂u

∂n
= 0 on ∂Ω.

From Motreanu-Motreanu-Papageorgiou [13], we know that this problem has a smallest eigen-

value λ̂1(p) which has the following properties:

• λ̂1(p) is isolated (that is, if σ̂(p) denotes the spectrum of (1), then there exists ε > 0 such

that (λ̂1(p), λ̂1(p) + ε) ∩ σ̂(p) = ∅).
• λ̂1(p) is simple (that is, if û, v̂ are eigenfunctions corresponding to λ̂1(p) then û = θv̂ with
θ 6= 0).
•

(2) λ̂1(p) = inf

{
µp(u)

‖u‖pp
: u ∈ W 1,p(Ω), u 6= 0

}
.

On account of Lemma 1 and (2), we have that λ̂1(p) > 0. The above properties imply that

the elements of the eigenspace corresponding to λ̂1(p) do not change sign and belong to C1(Ω)
(nonlinear regularity theory, see for example, Gasiński-Papageorgiou [4] (pp. 737-738)). By û(1, p)
we denote the non-negative, Lp-normalized (that is, ‖û(1, p)‖p = 1) eigenfunction corresponding to

λ̂1(p) > 0. We know that û(1, p) ∈ C+ and in fact from the nonlinear maximum principle (see, for
example, Gasiński-Papageorgiou [4] (p. 738)), we have that û(1, p) ∈ D+. The infimum in (2) is

realized at û(1, p). Every other eigenfunction û ∈ C1(Ω) corresponding to an eigenvalue λ̂ 6= λ̂1(p),
is nodal (that is, û is sign changing).
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We will also use a weighted version of the eigenvalue problem (1). So, let m ∈ L∞(Ω), m(z) ≥ 0
for a.a. z ∈ Ω, m 6≡ 0. We consider the following nonlinear eigenvalue problem:−∆pu(z) + ξ(z)|u(z)|p−2u(z) = λ̃m(z)|u(z)|p−2u(z) in Ω,

∂u

∂n
= 0 on ∂Ω.

This problem too has a smallest eigenvalue λ̃1(p,m) > 0 which is isolated, simple and admits
the following variational characterization

(3) λ̃1(p,m) = inf

[
µp(u)∫

Ω
m(z)|u|pdz

: u ∈ W 1,p(Ω), u 6= 0

]
.

Also the corresponding positive Lp-normalized eigenfunction ũ1(p,m) belongs in D+ and realizes
the infimum in (3). These properties and (3) lead to the following strict monotonicity property

for the map m→ λ̃1(p,m).

Proposition 2. If m1,m2 ∈ L∞(Ω), 0 ≤ m1(z) ≤ m2(z) for a.a. z ∈ Ω and both inequalities are

strict on sets of positive measure, then λ̃1(p,m2) < λ̃1(p,m1).

For x ∈ R, we set x± = max{±x, 0}. Then for u ∈ W 1,p(Ω) we define u±(·) = u(·)±. We know
that

u± ∈ W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

By | · |N we denote the Lebesgue measure on RN . Given u, v ∈ W 1,p(Ω) with u ≤ v, we set

[u, v] =
{
y ∈ W 1,p(Ω) : u(z) ≤ y(z) ≤ v(z) for a.a. z ∈ Ω

}
.

By intC1(Ω)[u, v] we denote the interior in the C1(Ω)-norm topology of the set [u, v] ∩ C1(Ω).

Also, [u) = {y ∈ W 1,p(Ω) : u(z) ≤ y(z) for a.a. z ∈ Ω} .
The hypotheses on the perturbation term f(z, x) are the following:

H(f): f : Ω× R→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω) such that

|f(z, x)| ≤ aρ(z) for a.a. z ∈ Ω, all 0 ≤ x ≤ ρ;

(ii) λ̂1(p) ≤ lim infx→+∞
f(z,x)
xp−1 ≤ lim supx→+∞

f(z,x)
xp−1 ≤ c0 uniformly for a.a. z ∈ Ω;

(iii) if F (z, x) =
∫ x

0
f(z, s)ds, then

f(z, x)x− pF (z, x)

xq
→ −∞ uniformly for a.a. z ∈ Ω as x→ +∞;

(iv) there exists w ∈ D+ such that

Ap(w) + Aq(w) ≥ 0 in W 1,p(Ω)∗, ∆pw + ∆qw ∈ Lp
′
(Ω)

(
1

p
+

1

p′
= 1

)
,

w(z)−γ + f(z, w(z)) ≤ −cw < 0 for a.a. z ∈ Ω;

(v) if mw = minΩ w > 0 (recall w ∈ D+, see (iv)), then there exists δ0 ∈ (0,mw) such that

0 < cm ≤ f(z, x) for a.a. z ∈ Ω, all 0 < m ≤ x ≤ δ0;
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(vi) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω the function x→ f(z, x)+ξ̂ρx
p−1

is nondecreasing on [0, ρ].

Remark 1. Since we are interested on positive solutions and the above hypotheses concern the
positive semiaxis R+ = [0,+∞), without any loss of generality we may assume that

f(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0.

Hypotheses H(f) (ii) allows for resonance to occur with respect to the principal eigenvalue λ̂1(p) >
0. We shall see in the process of the proof that hypothesis H(f) (iii) implies that this resonance

occurs from the right of λ̂1(p) > 0 in the sense that

λ̂1(p)xp − pF (z, x)→ −∞ uniformly for a.a z ∈ Ω, as x→ +∞.

This implies that the energy functional of the problem is indefinite and so the direct method of
the calculus of variations can not be used directly on the energy functional of (Pλ). In hypothesis
H(f) (iv), Ap(w) + Aq(w) ≥ 0 in W 1,p(Ω)∗ means that

〈Ap(w) + Aq(w), h〉 ≥ 0 for all h ∈ W 1,p(Ω), h ≥ 0.

If there exists η̃ > 0 such that

η̃−γ + f(z, η̃) ≤ −c̃ < 0 for a.a. z ∈ Ω,

then hypothesis H(f) (iv) is satisfied. Hypothesis H(f) (vi) is satisfied, if for example, for a.a.
z ∈ Ω f(z, ·) is differentiable on (0,+∞) and for every ρ > 0 there exists âρ > 0 such that

f ′x(z, x)x ≥ −âρxp−1 for a.a. z ∈ Ω, all 0 ≤ x ≤ ρ.

Example 1. The following function satisfies hypotheses H(f). For the sake of simplicity we drop
the z-dependence:

f(x) =

{
xτ−1 − 2xθ−1 if 0 ≤ x ≤ 1,

λ̂1(p)xp−1 + xs−1 − (λ̂1(p) + 2) if 1 < x,

with 1 < τ < s < p, τ < θ.

3. A Purely Singular Problem

In this section we deal with the following purely singular Neumann (p, q)-equation:

(Auλ)

−∆pu(z)−∆qu(z) + ξ(z)u(z)p−1 = λu(z)−γ in Ω,
∂u

∂n
= 0 on ∂Ω, u ≥ 0, 0 < γ < 1.

Proposition 3. If hypotheses H(ξ) holds and λ > 0, then problem (Auλ) admits a unique positive
solution ũλ ∈ D+, λ→ ũλ is nondecreasing and ‖ũλ‖C1(Ω) → 0 as λ→ 0+.
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Proof. Recall that µp : W 1,p(Ω)→ R is the C1-functional defined by

µp(u) = ‖∇u‖pp +

∫
Ω

ξ(z)|u|pdz for all u ∈ W 1,p(Ω)

(see Lemma 1). Given ε > 0, we consider the C1-functional ψελ : W 1,p(Ω)→ R defined by

ψελ(u) =
1

p
µp(u) +

1

q
‖∇u‖qq −

λ

1− γ

∫
Ω

[
(u+)p + ε

] 1−γ
p dz for all u ∈ W 1,p(Ω).

Using Lemma 1, we have

ψελ(u) ≥ c0‖u‖p −
λ

1− γ

∫
Ω

(
u+
)1−γ

dz − λc1 for some c1 > 0, all u ∈ W 1,p(Ω),

⇒ ψελ(·) is coercive.

Also using the Sobolev embedding theorem, we see that ψελ(·) is sequentially weakly lower
semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find uελ ∈ W 1,p(Ω) such that

(4) ψελ(u
ε
λ) = inf

[
ψελ(u) : u ∈ W 1,p(Ω)

]
.

Let r ∈ (0, 1). Then

ψελ(r) <
rp

p
c2 −

λr1−γ

1− γ
|Ω|N for some c2 > 0

<
rp

p
c2 +

λ

1− γ

[
ε

1−γ
p − r1−γ

]
|Ω|N .

For r > 2ε1/p we have

rp

p
c2 +

λ

1− γ

[
ε

1−γ
p − r1−γ

]
|Ω|N

<
rp

p
c2 −

λr1−γ

1− γ

[
1−

(
1

2

)1−γ
]
|Ω|N .

Since r ∈ (0, 1) and 0 < 1− γ < 1 < p, we can find r0 ∈ (0, 1) small such that

rp0
p
c2 −

λr1−γ
0

1− γ

[
1−

(
1

2

)1−γ
]
|Ω|N < 0.

Therefore for ε ∈
(

0,
(r0

2

)p)
we have

ψελ(r0) < ψελ(0) = − λ

1− γ
ε

1−γ
p |Ω|N ,

⇒ ψελ(u
ε
λ) < ψελ(0) (see (4)),

⇒ uελ 6= 0.

From (4) we have

(ψελ)
′(uελ) = 0,
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⇒ 〈Ap(uελ), h〉+ 〈Aq(uελ), h〉+

∫
Ω

ξ(z)|uελ|p−2uελhdz

= λ

∫
Ω

(
(uελ)

+
)p−1 [(

(uελ)
+
)p

+ ε
] 1−(γ+p)

p hdz for all h ∈ W 1,p(Ω).(5)

In (5) we choose h = −(uελ)
− ∈ W 1,p(Ω). Then

µp((u
ε
λ)
−) + ‖∇(uελ)

−‖qq = 0,

⇒ c0‖(uελ)−‖p ≤ 0 (see Lemma 1),

⇒ uελ ≥ 0, uελ 6= 0.

From (5) it follows that

(6)


−∆pu

ε
λ(z)−∆qu

ε
λ(z) + ξ(z)uελ(z)p−1 = λuελ(z)p−1 [uελ(z)p + ε]

1−(γ+p)
p

for a.a. z ∈ Ω,
∂uελ
∂n

= 0 on ∂Ω,

(see Papageorgiou-Rǎdulescu [15]). From (6) and Papageorgiou-Rǎdulescu [16], we have uελ ∈
L∞(Ω). Then the nonlinear regularity theory of Lieberman [10] implies that uελ ∈ C+ \ {0}.

From (6) we have

∆pu
ε
λ(z) + ∆qu

ε
λ(z) ≤ ‖ξ‖∞uελ(z)p−1 for a.a. z ∈ Ω.

Then the strong maximum principle of Pucci-Serrin [21] (pp. 111, 120), implies that uελ ∈ D+.

Claim: For every λ > 0, the set {uελ}ε∈(0,( r02 )
p
) ⊆ W 1,p(Ω) is bounded.

Arguing by contradiction, suppose that the Claim is not true. Then we can find {εn}n≥1 ⊆(
0,
(
r0
2

)p)
and {unλ = uεnλ }n≥1 ⊆ D+ such that

(7) ‖unλ‖ → +∞ as n→ +∞.

We set ynλ =
unλ
‖unλ‖

, n ∈ N. Then

(8) ‖ynλ‖ = 1 and ynλ ≥ 0 for all n ∈ N.

From (5) we have

(9) 〈µ′p(ynλ), h〉+
1

‖unλ‖p−q
〈Aq(ynλ), h〉 = λ

∫
Ω

(ynλ)p−1 [(unλ)p + εn]
1−(γ+p)

p hdz

for all h ∈ W 1,p(Ω), all n ∈ N. In (9) we choose h = ynλ ∈ W 1,p(Ω) and obtain

(10) µp(y
n
λ) +

1

‖unλ‖p−q
‖∇ynλ‖qq = λ

∫
Ω

(ynλ)p

[(unλ)p + εn]
p+γ−1
p

dz for all n ∈ N.

From the first part of the proof we know

pψεnλ (unλ) < 0 for all n ∈ N,
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⇒ µp(y
n
λ) +

p

q‖unλ‖p−q
‖∇ynλ‖qq −

λp

1− γ

∫
Ω

[(unλ)p + εn]
1−γ
p

‖unλ‖p
dz < 0 for all n ∈ N.(11)

From (10) and (11) and since q < p, we obtain

0 ≤
∫

Ω

(ynλ)p

[(unλ)p + εn]
p+γ−1
p

dz <
p

1− γ

∫
Ω

[(unλ)p + εn]
1−γ
p

‖unλ‖p
dz

≤ p

1− γ

∫
Ω

(unλ)1−γ + ε
1−γ
p

n

‖unλ‖p
dz → 0 as n→ +∞ (see (7)).

We return to (10) and use this last convergence together with (7) and the fact that q < p. We
obtain

µp(y
n
λ)→ 0 as n→ +∞,

⇒ ynλ → 0 in W 1,p(Ω) as n→ +∞ (see Lemma 1).

This contradicts (8). So, we have proved the Claim.
Next we consider a sequence {εn}n≥1 ⊆

(
0,
(
r0
2

)p)
such that εn → 0+. On account of the Claim,

we may assume that

(12) unλ = uεnλ
w−→ ũλ in W 1,p(Ω) and unλ = uεnλ → ũλ in Lp(Ω).

From (5) with h = unλ ∈ W 1,p(Ω), we have

(13) −µp(unλ)− ‖∇unλ‖qq +

∫
Ω

λ(unλ)p

[(unλ)p + εn]
p+γ−1
p

dz = 0 for all n ∈ N.

Also, from the first part of the proof, we know that

µp(u
n
λ) +

p

q
‖∇unλ‖qq −

λp

1− γ

∫
Ω

[(unλ)p + εn]
1−γ
p dz ≤ −c3 < 0(14)

for some c3 > 0, all n ∈ N.
Adding (13) and (14) and recalling that q < p, we obtain

0 ≤
∫

Ω

(unλ)p

[(unλ)p + εn]
p+γ−1
p

dz ≤ −c3 +
p

1− γ

∫
Ω

[(unλ)p + εn]
1−γ
p dz

≤ −c3 +
p

1− γ

∫
Ω

[
(unλ)1−γ + ε

1−γ
p

n

]
dz for all n ∈ N.(15)

Suppose that ũλ ≡ 0. Then from (12) we have

p

1− γ

∫
Ω

[
(unλ)1−γ + ε

1−γ
p

n

]
dz → 0 as n→ +∞,

⇒ 0 ≤ lim sup
n→+∞

∫
Ω

(unλ)p

[(unλ)p + εn]
p+γ−1
p

dz ≤ −c3 < 0 (see (15)),
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a contradiction. Hence ũλ 6= 0.
From (12) and by passing to a subsequence if necessary, we can say that there exists ϑλ ∈ Lp(Ω),

ϑλ(z) ≥ 1 for a.a. z ∈ Ω, such that

0 ≤ unλ(z) ≤ ϑλ(z) for a.a. z ∈ Ω, all n ∈ N,

(16)

unλ(z)→ ũλ(z) for a.a. z ∈ Ω, as n→ +∞.

We set

Ωn
1 = {z ∈ Ω : (unλ − ũλ)(z) > 0} and Ωn

2 = {z ∈ Ω : (unλ − ũλ)(z) < 0} .
We have ∫

Ω

(unλ)p−1

[(unλ)p + εn]
p+γ−1
p

(unλ − ũλ)dz

=

∫
Ωn1

(unλ)p−1

[(unλ)p + εn]
p+γ−1
p

(unλ − ũλ)dz +

∫
Ωn2

(unλ)p−1

[(unλ)p + εn]
p+γ−1
p

(unλ − ũλ)dz

≤
∫

Ωn1

unλ − ũλ
(unλ)γ

dz +

∫
Ωn2

1

2ϑγλ

(
unλ
ϑλ

)p−1

(unλ − ũλ)dz(17)

for all n ∈ N (see (16) and recall that ϑλ(z) ≥ 1 a.e.). From (16) we have

(18) 0 ≤ ũλ ≤ ϑλ and 0 ≤ unλ ≤ ϑλ for all n ∈ N.
So, we have ∫

Ωn1

unλ − ũλ
(unλ)γ

dz =

∫
Ωn1

[
(unλ)1−γ − ũλ(unλ)−γ

]
dz for all n ∈ N,

⇒ lim
n→+∞

∫
Ωn1

unλ − ũλ
(unλ)γ

dz = 0 (see (16), (18)).(19)

In addition we have

(20)

∫
Ωn2

1

2ϑγλ

(
unλ
ϑλ

)p−1

(unλ − ũλ)dz → 0 as n→ +∞ (see (16)).

Returning to (17), passing to the limit as n→ +∞ and using (19) and (20), we obtain

(21) lim
n→+∞

∫
Ω

(unλ)p−1

[(unλ)p + εn]
p+γ−1
p

(unλ − ũλ)dz = 0.

In (5) we choose h = unλ − ũλ ∈ W 1,p(Ω), pass to the limit as n → +∞ and use (12) and (21).
Then

lim sup
n→+∞

[〈Ap(unλ), unλ − ũλ〉+ 〈Aq(unλ), unλ − ũλ〉] ≤ 0,

⇒ lim sup
n→+∞

[〈Ap(unλ), unλ − ũλ〉+ 〈Aq(ũλ), unλ − ũλ〉] ≤ 0,
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(since Aq(·) is monotone)

⇒ lim sup
n→+∞

〈Ap(unλ), unλ − ũλ〉 ≤ 0 (see (12)),

⇒ unλ → ũλ in W 1,p(Ω), ũλ ≥ 0, ũλ 6= 0 (see Proposition 1).(22)

We may assume that ‖unλ‖∞ < 1, since on {unλ ≥ 1} we can use the dominated convergence
theorem ∣∣∣∣∣

∫
Ω

(unλ)p−1

[(unλ)p + εn]
p+γ−1
p

hdz

∣∣∣∣∣
≤
∫

Ω

(unλ)p−1

[(unλ)p + εn]
p+γ−1
p

|h|dz

≤
∫

Ω

(unλ)p−1

[(unλ)p + εn]
p+γ−1
pp′
|h|dz

≤

[∫
Ω

(unλ)p

[(unλ)p + εn]
p+γ−1
p

dz

]1/p′

‖h‖p (by Hölder’s inequality)

≤
[∫

Ω

(unλ)1−γdz

]1/p′

‖h‖p

≤ c4‖unλ‖1−γ‖h‖p for some c4 > 0, all n ∈ N big,

≤ c5‖h‖p for some c5 > 0, all h ∈ W 1,p(Ω), all n ∈ N,

⇒

{
(unλ)p−1

[(unλ)p + εn]
p+γ−1
p

}
n≥1

⊆ Lp
′
(Ω) is bounded

(
1

p
+

1

p′
= 1

)
.

In addition, we have

(unλ)p−1

[(unλ)p + εn]
p+γ−1
p

→ ũ−γλ for a.a. z ∈ Ω as n→ +∞ (see (16)).

Then, we have

(23)
(unλ)p−1

[(unλ)p + εn]
p+γ−1
p

w−→ ũ−γλ in Lp
′
(Ω).

Therefore if in (5) we pass to the limit as n→ +∞ and use (22) and (23), then we obtain

(24) 〈Ap(ũλ), h〉+ 〈Aq(ũλ), h〉+

∫
Ω

ξ(z)ũp−1
λ hdz = λ

∫
Ω

ũ−γλ hdz for all h ∈ W 1,p(Ω).
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In (24) first we choose h =
1

[ũpλ + ε]
p−1
p

∈ W 1,p(Ω) (ε > 0). Then

∫
Ω

ũ−γλ

[ũpλ + ε]
p−1
p

dz ≤
∫

Ω

ξ(z)ũp−1
λ

[ũpλ + ε]
p−1
p

dz.

Let ε→ 0+ and use Fatou’s lemma. Then

(25)

∫
Ω

1

ũp+γ−1
λ

dz ≤ ‖ξ‖∞|Ω|N (see hypothesis H(ξ)).

Next in (24) we choose h =
1

[ũpλ + ε]
2(p−1)+γ

p

∈ W 1,p(Ω). Then arguing as above, we obtain

∫
Ω

ũ−γλ

ũ
2(p−1)+γ
λ

dz =

∫
Ω

1

ũ
2(p+γ−1)
λ

dz

≤
∫

Ω

ξ(z)
1

ũp+γ−1
λ

dz ≤ ‖ξ‖2
∞|Ω|N (see (25)).

Continuing this way, we obtain∫
Ω

1

ũ
k(p+γ−1)
λ

dz ≤ ‖ξ‖k∞|Ω|N for all k ∈ N.

From this we infer that

ũ
−(p+γ−1)
λ ∈ Lτ (Ω) for all τ ≥ 1,

lim sup
τ→+∞

‖ũ−(p+γ−1)
λ ‖τ < +∞.

Then we have that ũ
−(p+γ−1)
λ ∈ L∞(Ω). Note that

ũ−γλ = ũ
−(p+γ−1)
λ ũp−1

λ .

So, from (24) and Papageorgiou-Rǎdulescu [16], we infer that ũλ ∈ L∞(Ω). Then the nonlinear
regularity theory of Lieberman [10] implies that ũλ ∈ C+ \ {0}.

From (24) we have

(26)

−∆pũλ(z)−∆qũλ(z) + ξ(z)ũλ(z)p−1 = λũλ(z)−γ for a.a. z ∈ Ω,
∂ũλ
∂n

= 0 on ∂Ω.

From (26) as before via the nonlinear strong maximum principle of Pucci-Serrin [21], we have
that ũλ ∈ D+.

Next we show that this solution is unique. To this end, let ṽλ be another positive solution of
(Auλ). Again we can show that ṽλ ∈ D+. We have

0 ≤ 〈Ap(ũλ)− Ap(ṽλ), ũλ − ṽλ〉+ 〈Aq(ũλ)− Aq(ṽλ), ũλ − ṽλ〉
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+

∫
Ω

ξ(z)(ũp−1
λ − ṽp−1

λ )(ũλ − ṽλ)dz = λ

∫
Ω

[ũ−γλ − ṽ
−γ
λ ](ũλ − ṽλ)dz ≤ 0,

⇒ ũλ = ṽλ.

This proves the uniqueness of the positive solution of (Auλ).
Next let 0 < τ < η. We have

0 ≤ 〈Ap(ũτ )− Ap(ũη), (ũτ − ũη)+〉+ 〈Aq(ũτ )− Aq(ũη), (ũτ − ũη)+〉

+

∫
Ω

ξ(z)(ũp−1
τ − ũp−1

η )(ũτ − ũη)+dz =

∫
Ω

[τ ũ−γτ − ηũ−γη ](ũτ − ũη)+dz

≤
∫

Ω

τ [ũ−γτ − ũ−γη ](ũτ − ũη)+dz ≤ 0,

⇒ ũτ ≤ ũη.

Therefore the map λ→ ũλ is nondecreasing from (0,+∞) into D+. In (24) we choose h = ũλ ∈
W 1,p(Ω). Then

‖∇ũλ‖pp +

∫
Ω

ξ(z)ũpλdz ≤ λ

∫
Ω

ũ1−γ
λ dz,

⇒ c0‖ũλ‖p ≤ λc6‖ũλ‖1−γ for some c6,

⇒ {uλ}λ∈(0,1] ⊆ W 1,p(Ω) bounded and ‖ũλ‖ → 0 as λ→ 0+.(27)

Then (27) and the nonlinear regularity theory of Lieberman [10], imply that we can find α ∈ (0, 1)
and c7 > 0 such that

ũλ ∈ C1,α(Ω) and ‖ũλ‖C1,α(Ω) ≤ c7 for all λ ∈ (0, 1].

Exploiting the compact embedding of C1,α(Ω) into C1(Ω) and using (27), we conclude that
ũλ → 0 in C1(Ω) as λ→ 0+. �

4. Multiple Positive Solutions

On account of Proposition 3, we can find λ0 > 0 such that

(28) ũλ(z) ∈ (0, δ0] for all z ∈ Ω, all λ ∈ (0, λ0],

with δ0 > 0 as postulated by hypothesis H(f) (v).
Using (28), suitable truncation and comparison techniques and the direct method of the calculus

of variations, we can produce a positive solution for (Pλ) when λ ∈ (0, λ0].

Proposition 4. If hypotheses H(ξ), H(f) hold and λ ∈ (0, λ0], then problem (Pλ) admits a positive
solution u0 ∈ D+ such that u0 ∈ intC1(Ω)[ũλ, w].
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Proof. Using ũλ ∈ D+ from Proposition 3 and w ∈ D+ from hypothesis H(f) (iv), we introduce
the following truncation of the reaction in problem (Pλ):

(29) gλ(z, x) =


λũλ(z)−γ + f(z, ũλ(z)) if x < ũλ(z),

λx−γ + f(z, x) if ũλ(z) ≤ x ≤ w(z),

λw(z)−γ + f(z, w(z)) if w(z) < x.

Evidently this is a Carathéodory function. We set Gλ(z, x) =
∫ x

0
gλ(z, s)ds and consider the

functional ψ̂λ : W 1,p(Ω)→ R defined by

ψ̂λ(u) =
1

p
µp(u) +

1

q
‖∇u‖qq −

∫
Ω

Gλ(z, u)dz for all u ∈ W 1,p(Ω).

Since ũλ, w ∈ D+, we see that ψ̂λ ∈ C1(W 1,p(Ω),R).

From (29) and Lemma 1, it follows that ψ̂λ is coercive. Also using the Sobolev embedding

theorem, we see that ψ̂λ is sequentially weakly lower semicontinuous. Therefore by the Weierstrass-
Tonelli theorem, we know that there exists u0 ∈ W 1,p(Ω) such that

ψ̂λ(u0) = inf
[
ψ̂λ(u) : u ∈ W 1,p(Ω)

]
,

⇒ ψ̂′λ(u0) = 0,

⇒ 〈Ap(u0), h〉+ 〈Aq(u0), h〉+

∫
Ω

ξ(z)|u0|p−2u0hdz =

∫
Ω

gλ(z, u0)hdz for all h ∈ W 1,p(Ω).(30)

In (30), first we choose h = (ũλ − u0)+ ∈ W 1,p(Ω). Then

〈Ap(u0), (ũλ − u0)+〉+ 〈Aq(u0), (ũλ − u0)+〉+

∫
Ω

ξ(z)|u0|p−2u0(ũλ − u0)+dz

=

∫
Ω

[
λũ−γλ + f(z, ũλ)

]
(ũλ − u0)+dz (see (29))

≥
∫

Ω

λũ−γλ (ũλ − u0)+dz (see (28) and hypothesis H(f) (v))

= 〈Ap(ũλ), (ũλ − u0)+〉+ 〈Aq(ũλ), (ũλ − u0)+〉+

∫
Ω

ξ(z)ũp−1
λ (ũλ − u0)+dz,

⇒ 〈Ap(ũλ)− Ap(u0), (ũλ − u0)+〉+ 〈Aq(ũλ)− Aq(u0), (ũλ − u0)+〉

+

∫
Ω

ξ(z)
[
ũp−1
λ − |u0|p−2u0

]
(ũλ − u0)+dz ≤ 0

⇒ ũλ ≤ u0.

Next in (30), we choose h = (u0 − w)+ ∈ W 1,p(Ω). Then

〈Ap(u0), (u0 − w)+〉+ 〈Aq(u0), (u0 − w)+〉+

∫
Ω

ξ(z)up−1
0 (u0 − w)+dz

=

∫
Ω

[
λw−γ + f(z, w)

]
(u0 − w)+dz (see (29))
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≤ 〈Ap(w), (u0 − w)+〉+ 〈Aq(w), (u0 − w)+〉+

∫
Ω

ξ(z)wp−1(u0 − w)+dz

(see hypothesis H(f) (iv)),

⇒ 〈Ap(u0)− Ap(w), (u0 − w)+〉+ 〈Aq(u0)− Aq(w), (u0 − w)+〉

+

∫
Ω

ξ(z)
[
up−1

0 − wp−1
]

(u0 − w)+dz ≤ 0

⇒ u0 ≤ w.

So, we have proved that

(31) u0 ∈ [ũλ, w].

From (29), (30) and (31), we obtain

(32)

−∆pu0(z)−∆qu0(z) + ξ(z)u0(z)p−1 = λu0(z)−γ + f(z, u0(z)) for a.a. z ∈ Ω,
∂u0

∂n
= 0 on ∂Ω,

(see Papageorgiou-Rǎdulescu [15]). From (32) and Papageorgiou-Rǎdulescu [16], it follows that
u0 ∈ L∞(Ω). Then the nonlinear regularity theory of Lieberman [10] implies that u0 ∈ [ũλ, w]∩D+.

Let ρ̃λ = minΩ ũλ > 0 (recall that ũλ ∈ D+). Also, let ρ = ‖w‖C1(Ω) and let ξ̂ρ > 0 be

as postulated by hypothesis H(f) (vi). We can always increase ξ̂ρ > 0 if necessary, in order to

guarantee that the function x→ λx−γ + f(z, x) + ξ̂ρx
p−1 is nondecreasing on [ρ̃λ, ρ].

Let δ > 0 and set ũδλ = ũλ + δ ∈ D+. Then

−∆pũ
δ
λ −∆qũ

δ
λ + (ξ(z) + ξ̂ρ)(ũ

δ
λ)
p−1

≤ −∆pũλ −∆qũλ + (ξ(z) + ξ̂ρ)ũ
p−1
λ + σ(δ) with σ(δ)→ 0+ as δ → 0+

≤ λũ−γλ + f(z, ũλ) + ξ̂ρũ
p−1
λ for δ > 0 small so that σ(δ) ≤ cρ̃λ

(see hypothesis H(f) (v) and (28))

≤ λu−γ0 + f(z, u0) + ξ̂ρu
p−1
0 (since ũλ ≤ u0)

= −∆pu0 −∆qu0 + (ξ(z) + ξ̂ρ)u
p−1
0 for a.a. z ∈ Ω,

⇒ ũδλ ≤ u0 for all δ > 0 small,

⇒ u0 − ũλ ∈ D+.(33)

Similarly, we set uδ0 = u0 + δ ∈ D+, for δ > 0. We have

−∆pu
δ
0 −∆qu

δ
0 + (ξ(z) + ξ̂ρ)(u

δ
0)p−1

≤ −∆pu0 −∆qu0 + (ξ(z) + ξ̂ρ)u
p−1
0 + σ̃(δ) with σ̃(δ)→ 0+ as δ → 0+

= λu−γ0 + f(z, u0) + ξ̂ρu
p−1
0 + σ̃(δ)

≤ λw−γ + f(z, w) + ξ̂ρw
p−1 + σ̃(δ) (since u0 ≤ w)
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≤ −cw + ξ̂ρw
p−1 + σ̃(δ)

≤ −∆pw −∆qw + (ξ(z) + ξ̂ρ)w
p−1 for δ > 0 small so that σ̃(δ) ≤ cw

(see hypothesis H(f) (v)),

⇒ uδ0 ≤ w for δ > 0 small,

⇒ w − u0 ∈ D+.(34)

From (33) and (34), we conclude that u0 ∈ intC1(Ω)[ũλ, w]. �

Using u0 ∈ D+ from Proposition 4 and by employing variational tools (in particular Theorem
1), we can establish the existence of a second positive solution for problem (Pλ) when λ ∈ (0, λ0).

Proposition 5. If hypotheses H(ξ), H(f) hold and λ ∈ (0, λ0), then problem (Pλ) has a second
positive solution û ∈ D+, û 6= u0, ũλ ≤ û.

Proof. We consider the following truncation of the reaction for problem (Pλ):

(35) f̂λ(z, x) =

{
λũλ(z)−γ + f(z, ũλ(z)) if x ≤ ũλ(z),

λx−γ + f(z, x) if ũλ(z) < x.

Evidently this is a Carathéodory function. We set F̂λ(z, x) =
∫ x

0
f̂λ(z, s)ds and introduce the

functional ϕ̂λ : W 1,p(Ω)→ R defined by

ϕ̂λ(u) =
1

p
µp(u) +

1

q
‖∇u‖qq −

∫
Ω

F̂λ(z, u)dz for all u ∈ W 1,p(Ω).

Since ũλ ∈ D+, we see that ϕ̂λ ∈ C1(W 1,p(Ω),R).

Let ψ̂λ ∈ C1(W 1,p(Ω),R) be as in the proof of Proposition 4. From (29) and (35), we see that

(36) ϕ̂λ

∣∣∣
[ũλ,w]

= ψ̂λ

∣∣∣
[ũλ,w]

.

Recall that

(37) u0 ∈ intC1(Ω)[ũλ, w] and u0 is a minimizer of ψ̂λ

(see Proposition 4 and its proof).
From (36) and (37) it follows that

u0 ∈ D+ is a local C1(Ω)-minimizer of ϕ̂λ,

⇒ u0 ∈ D+ is a local W 1,p(Ω)-minimizer of ϕ̂λ(38)

(see Papageorgiou-Rădulescu [16], Proposition 8).
Let Kϕ̂λ = {u ∈ W 1,p(Ω) : ϕ̂′λ(u) = 0} (the critical set of ϕ̂λ) and

[ũλ) = {u ∈ W 1,p(Ω) : ũλ(z) ≤ u(z) for a.a. z ∈ Ω}.

Claim 1: Kϕ̂λ ⊆ [ũλ) ∩D+.
Let u ∈ Kϕ̂λ . We have

ϕ̂′λ(u) = 0,
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⇒ 〈Ap(u), h〉+ 〈Aq(u), h〉+

∫
Ω

ξ(z)|u|p−2uhdz =

∫
Ω

f̂λ(z, u)hdz(39)

for all h ∈ W 1,p(Ω).

In (39) we choose h = (ũλ − u)+ ∈ W 1,p(Ω). Then

〈Ap(u), (ũλ − u)+〉+ 〈Aq(u), (ũλ − u)+〉+

∫
Ω

ξ(z)|u|p−2(ũλ − u)+dz

=

∫
Ω

[λũ−γλ + f(z, ũλ)](ũλ − u)+dz (see (35))

≥
∫

Ω

λũ−γλ (ũλ − u)+dz (see (28) and hypothesis H(f) (v))

= 〈Ap(ũλ), (ũλ − u)+〉+ 〈Aq(ũλ), (ũλ − u)+〉+

∫
Ω

ξ(z)ũp−1
λ (ũλ − u)+dz

(see Proposition 3),

⇒ 〈Ap(ũλ)− Ap(u), (ũλ − u)+〉+ 〈Aq(ũλ)− Aq(u), (ũλ − u)+〉

+

∫
Ω

ξ(z)
[
ũp−1
λ − |u|p−2u

]
(ũλ − u)+dz ≤ 0,

⇒ ũλ ≤ u.

Then (39) becomes

〈Ap(u), h〉+ 〈Aq(u), h〉+

∫
Ω

ξ(z)up−1hdz =

∫
Ω

[λu−γ + f(z, u)]hdz

for all h ∈ W 1,p(Ω),

⇒

−∆pu(z)−∆qu(z) + ξ(z)u(z)p−1 = λu(z)−γ + f(z, u(z)) for a.a. z ∈ Ω,
∂u

∂n
= 0 on ∂Ω,

⇒ u ∈ D+ (by the nonlinear regularity theory).

Therefore we conclude that Kϕ̂λ ⊆ [ũλ) ∩D+. This proves Claim 1.
On account of Claim 1, we may assume that

(40) Kϕ̂λ is finite.

Otherwise we already have an infinity of positive solutions of (Pλ) and so we are done. Then
from (38) and (40) we infer that there exists ρ ∈ (0, 1) small such that

(41) ϕ̂λ(u0) < inf [ϕ̂λ(u) : ‖u− u0‖ = ρ] = m̂ρ

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29).
Hypothesis H(f) (iii) implies that given any η > 0, we can find M1 = M1(η) > 0 such that

(42) f(z, x)x− pF (z, x) ≤ −ηxq for a.a. z ∈ Ω, all x ≥M1.
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We have

d

dx

[
F (z, x)

xp

]
=
f(z, x)xp − pxp−1F (z, x)

x2p

=
f(z, x)x− pF (z, x)

xp+1

≤ − η

xp−q+1
for a.a. z ∈ Ω, all x ≥M1 (see (42)),

⇒ F (z, x)

xp
− F (z, y)

yp
≤ η

p− q

[
1

xp−q
− 1

yp−q

]
for a.a. z ∈ Ω, all x ≥ y ≥M1.(43)

Note that hypothesis H(f) (ii) implies that

(44)
λ̂1(p)

p
≤ lim inf

x→+∞

F (z, x)

xp
≤ lim sup

x→+∞

F (z, x)

xp
≤ c0

p
uniformly for a.a. z ∈ Ω.

So, if in (43) we let x→ +∞ and use (44) and the fact that − η
p−q < −

η
p

then we obtain

λ̂1(p)yp − pF (z, y)

yq
≤ −η for a.a. z ∈ Ω, all x ≥M1,

⇒ lim
y→+∞

λ̂1(p)yp − pF (z, y)

yq
= −∞ uniformly for a.a. z ∈ Ω.(45)

Since û(1, p) ∈ D+, we can find t ≥ 1 big such that

ũλ ≤ t û(1, p)

(see also Proposition 2.1 of Marano-Papageorgiou [12]). We have

ϕ̂λ(t û(1, p)) ≤ tp

p
λ̂1(p)‖û(1, p)‖pp +

tq

q
‖∇û(1, p)‖qq −

∫
Ω

F (z, t û(1, p))dz + c8

for some c8 > 0 (see (35)),

⇒ pϕ̂λ(t û(1, p)) ≤
∫

Ω

[
λ̂1(p)(t û(1, p))p − pF (z, t û(1, p))

]
dz +

tqp

q
‖∇û(1, p)‖qq + pc8,

⇒ pϕ̂λ(t û(1, p))

tq
≤
∫

Ω

λ̂1(p)(t û(1, p))p − pF (z, t û(1, p))

tqû(1, p)q
û(1, p)qdz +

p

q
‖∇û(1, p)‖qq +

pc8

tq
,

⇒ pϕ̂λ(t û(1, p))

tq
→ −∞ as t→ +∞ (see (45)),

⇒ ϕ̂λ(t û(1, p))→ −∞ as t→ +∞.(46)

Claim 2: ϕ̂λ satisfies the C-condition.
Let {un}n≥1 ⊆ W 1,p(Ω) be a sequence such that

|ϕ̂λ(un)| ≤M2 for some M2 > 0, all n ∈ N,(47)

(1 + ‖un‖)ϕ̂′λ(un)→ 0 in W 1,p(Ω)∗ as n→ +∞.(48)
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From (48) we have∣∣∣∣〈Ap(un), h〉+ 〈Aq(un), h〉+

∫
Ω

ξ(z)|un|p−2unhdz −
∫

Ω

f̂λ(z, un)hdz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

(49)

for all h ∈ W 1,p(Ω) with εn → 0+.

In (49) we choose h = −u−n ∈ W 1,p(Ω). Using (35) we obtain

‖∇u−n ‖pp +

∫
Ω

ξ(z)(u−n )pdz ≤
∫

Ω

[
ũ−γλ + f(z, ũλ)

]
(−u−n )dz + εn,

⇒ c0‖u−n ‖p ≤ c9‖u−n ‖ for some c9 > 0, all n ∈ N
(see Lemma 1, hypothesis H(f) (i) and recall that ũλ ∈ D+),

⇒ {u−n }n≥1 ⊆ W 1,p(Ω) is bounded.(50)

We will show that {u+
n }n≥1 ⊆ W 1,p(Ω) is bounded too. To establish this, we argue by contra-

diction. So, suppose that at least for a subsequence, we have

(51) ‖u+
n ‖ → +∞ as n→ +∞.

We set yn =
u+
n

‖u+
n ‖

, n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N and so we may assume that

(52) yn
w−→ y in W 1,p(Ω) and yn → y in Lp(Ω), y ≥ 0.

From (49) and (50), we have∣∣∣∣〈Ap(u+
n ), h〉+ 〈Aq(u+

n ), h〉+

∫
Ω

ξ(z)(u+
n )p−1hdz −

∫
Ω

f̂λ(z, u
+
n )hdz

∣∣∣∣
≤ c10‖h‖ for some c10 > 0, all h ∈ W 1,p(Ω), all n ∈ N,

⇒

∣∣∣∣∣〈Ap(yn), h〉+
1

‖u+
n ‖p−q

〈Aq(yn), h〉+

∫
Ω

ξ(z)yp−1hdz −
∫

Ω

f̂λ(z, u
+
n )

‖u+
n ‖p−1

hdz

∣∣∣∣∣(53)

≤ c10‖h‖
‖u+

n ‖p−1
for all h ∈ W 1,p(Ω), all n ∈ N.

Since ũλ ∈ D+, using (35) and hypothesis H(f) (i), (ii) we see that

(54)

{
f̂λ(·, u+

n (·))
‖u+

n ‖p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded.

So, by passing to a subsequence if necessary and using hypothesis H(f) (iii) we have that

(55)
f̂λ(·, u+

n (·))
‖u+

n ‖p−1

w−→ ϑ0(z)yp−1 in Lp
′
(Ω), with λ̂1(p) ≤ ϑ0(z) ≤ c0 for a.a. z ∈ Ω

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 16). In (53) we choose h = yn − y ∈
W 1,p(Ω), pass to the limit as n→ +∞ and use (51), (52), (54) and the fact that q < p. Then

lim〈Ap(yn), yn − y〉 = 0,
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⇒ yn → y in W 1,p(Ω) (see Proposition 1), ‖y‖ = 1, y ≥ 0.(56)

If in (53) we pass to the limit as n→ +∞ and use (51), (55), (56) and the fact that q < p, we
obtain

〈Ap(y), h〉+

∫
Ω

ξ(z)yp−1hdz =

∫
Ω

ϑ0(z)yp−1hdz for all h ∈ W 1,p(Ω),

⇒ −∆py(z) + ξ(z)y(z)p−1 = ϑ0(z)y(z)p−1 for a.a. z ∈ Ω,
∂y

∂n
= 0 on ∂Ω.(57)

Recall that
λ̂1(p) ≤ ϑ0(z) ≤ c0 for a.a. z ∈ Ω (see (55)).

If ϑ0 6≡ λ̂1(p), then using Proposition 2, we have

λ̃1(p, ϑ0) < λ̃1(p, λ̂1(p)) = 1,

⇒ y must be nodal (see (57)),

a contradiction to (56).

If ϑ0(z) = λ̂1(p) for a.a. z ∈ Ω, then from (57) we see that

y = η û(1, p) for some η > 0,

⇒ y ∈ D+ and so y(z) > 0 for all z ∈ Ω,

⇒ u+
n (z)→ +∞ for all z ∈ Ω,

⇒ f(z, u+
n (z))u+

n (z)− pF (z, u+
n (z))

u+
n (z)q

→ −∞ for a.a. z ∈ Ω,

⇒
∫

Ω

f(z, u+
n )u+

n − pF (z, u+
n )

‖u+
n ‖q

dz → −∞ (by Fatou’s lemma).(58)

In (49) we choose h = u+
n ∈ W 1,p(Ω). Then

(59) −‖∇u+
n ‖pp − ‖∇u+

n ‖qq −
∫

Ω

ξ(z)(u+
n )pdz +

∫
Ω

f̂λ(z, u
+
n )u+

n dz ≥ −εn for all n ∈ N.

From (47) and (50) it follows that

‖∇u+
n ‖pp +

p

q
‖∇u+

n ‖qq +

∫
Ω

ξ(z)(u+
n )pdz −

∫
Ω

pF̂λ(z, u
+
n )dz ≥ −M3(60)

for some M3 > 0, all n ∈ N.
We add (59) and (60). Then(

p

q
− 1

)
‖∇u+

n ‖qq +

∫
Ω

[
f̂λ(z, u

+
n )u+

n − pF̂λ(z, u+
n )
]
dz ≥ −M4

for some M4 > 0, all n ∈ N,

⇒
(
p

q
− 1

)
‖∇u+

n ‖qq +

∫
Ω

[
f(z, u+

n )u+
n − pF (z, u+

n )
]
dz ≥ −M5

for some M5 > 0, all n ∈ N (see (35) and recall ũλ ∈ D+),
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⇒
(
p

q
− 1

)
c̃+

∫
Ω

[f(z, u+
n )u+

n − pF (z, u+
n )]

‖u+
n ‖q

dz ≥ − M5

‖u+
n ‖q

for all n ∈ N, some c̃ > 0,

⇒ lim inf
n→+∞

∫
Ω

[f(z, u+
n )u+

n − pF (z, u+
n )]

‖u+
n ‖q

dz ≥ −p− q
q

c̃.(61)

Comparing (58) and (61), we have a contradiction. This proves that

{u+
n }n≥1 ⊆ W 1,p(Ω) is bounded,

⇒ {un}n≥1 ⊆ W 1,p(Ω) is bounded (see (50)).

So, we may assume that

(62) un
w−→ u in W 1,p(Ω) and un → u in Lp(Ω) as n→ +∞.

Evidently

(63)
{
f̂λ(·, un(·))

}
n≥1
⊆ Lp

′
(Ω) is bounded (see (35)).

So, if in (49) we choose h = un − u ∈ W 1,p(Ω), pass to the limit as n → +∞ and we use (62)
and (63), then

lim
n→+∞

[〈Ap(un), un − u〉+ 〈Aq(un), un − u〉] = 0,

⇒ un → u in W 1,p(Ω) (see Proposition 1 and the proof of Proposition 3)

⇒ ϕ̂λ satisfies the C-condition.

This proves Claim 2.
From (41), (46) and Claim 2, we see that we can apply Theorem 1 (the mountain pass theorem)

and find û ∈ W 1,p(Ω) such that

û ∈ Kϕ̂λ ⊆ [ũλ) ∩D+ (see Claim 1),

(64)

ϕ̂λ(u0) < m̂ρ ≤ ϕ̂λ(û) (see (41)).

From (64) and (35), we infer that û ∈ D+ is the second positive solution of (Pλ), 0 < λ ≤ λ0.
�

Summarizing, we can state the following multiplicity result for problem (Pλ).

Theorem 2. If hypotheses H(ξ), H(f) hold, then there exists λ0 > 0 such that for all λ ∈ (0, λ0]
problem (Pλ) has at least two positive solutions u0, û ∈ D+, u0 6= û.
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ties, Ann. Henri Poincaré, 13 (2012), no. 3, 481–512.
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