Using recent results for local composite likelihood for spatial point processes, we show the performance of advanced and flexible statistical models to describe the spatial displacement of earthquake data. Local models described by Baddeley (2017) allow for the possibility of describing both seismic catalogs and sequences. When analysing seismic sequences, the analysis of the small scale variation is the main issue. The interaction among points is taken into account by Log-Gaussian Cox Processes models through the estimation of the parameters of the covariance of the Gaussian Random Field. In their local version these parameters are allowed to vary spatially, and this is a crucial aspect for describing and characterizing the study area through a multiple underlying process.

Nicoletta D'Angelo, Marianna Siino, Antonino D'Alessandro, Giada Adelfio (2020). Local LGCP estimation for spatial seismic processes. In Book of short papers - SIS 2020 (pp. 857-862). Pearson.

Local LGCP estimation for spatial seismic processes

Nicoletta D'Angelo
;
Marianna Siino;Antonino D'Alessandro;Giada Adelfio
2020

Abstract

Using recent results for local composite likelihood for spatial point processes, we show the performance of advanced and flexible statistical models to describe the spatial displacement of earthquake data. Local models described by Baddeley (2017) allow for the possibility of describing both seismic catalogs and sequences. When analysing seismic sequences, the analysis of the small scale variation is the main issue. The interaction among points is taken into account by Log-Gaussian Cox Processes models through the estimation of the parameters of the covariance of the Gaussian Random Field. In their local version these parameters are allowed to vary spatially, and this is a crucial aspect for describing and characterizing the study area through a multiple underlying process.
Settore SECS-S/01 - Statistica
9788891910776
Nicoletta D'Angelo, Marianna Siino, Antonino D'Alessandro, Giada Adelfio (2020). Local LGCP estimation for spatial seismic processes. In Book of short papers - SIS 2020 (pp. 857-862). Pearson.
File in questo prodotto:
File Dimensione Formato  
short_paper_dangelo.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 363.1 kB
Formato Adobe PDF
363.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/422891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact