Quantile regression can be used to obtain a non-parametric estimate of a conditional quantile function. The presence of quantile crossing, however, leads to an invalid distribution of the response and makes it difficult to use the fitted model for prediction. In this work, we show that crossing can be alleviated by modelling the quantile function parametrically. We then describe an algorithm for constrained optimisation that can be used to estimate parametric quantile functions with the noncrossing property. We investigate climate change by modelling the long-term trends of extreme temperatures in the Arctic Circle.
Sottile, G., Frumento, P. (2019). Non-crossing parametric quantile functions: an application to extreme temperatures. In G. Arbia, S. Peluso, A. Pini, G. Rivellini (a cura di), Smart Statistics for Smart Applications - Book of Short Papers SIS2019 (pp. 533-540). Milano : Pearson.
Non-crossing parametric quantile functions: an application to extreme temperatures
Sottile, Gianluca
;
2019-01-01
Abstract
Quantile regression can be used to obtain a non-parametric estimate of a conditional quantile function. The presence of quantile crossing, however, leads to an invalid distribution of the response and makes it difficult to use the fitted model for prediction. In this work, we show that crossing can be alleviated by modelling the quantile function parametrically. We then describe an algorithm for constrained optimisation that can be used to estimate parametric quantile functions with the noncrossing property. We investigate climate change by modelling the long-term trends of extreme temperatures in the Arctic Circle.File | Dimensione | Formato | |
---|---|---|---|
SIS2019_Sottile_Frumento.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
2.81 MB
Formato
Adobe PDF
|
2.81 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.