We consider nonlinear elliptic Dirichlet problems driven by the sum of a p-Laplacian and a Laplacian (a (p,2) -equation). The reaction term at ±∞ is resonant with respect to any variational eigenvalue of the p-Laplacian. We prove two multiplicity theorems for such equations.
Papageorgiou N.S., Vetro C., & Vetro F. (2020). (p,2)-equations resonant at any variational eigenvalue. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 65(7), 1077-1103.
Data di pubblicazione: | 2020 |
Titolo: | (p,2)-equations resonant at any variational eigenvalue |
Autori: | |
Citazione: | Papageorgiou N.S., Vetro C., & Vetro F. (2020). (p,2)-equations resonant at any variational eigenvalue. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 65(7), 1077-1103. |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1080/17476933.2018.1508287 |
Abstract: | We consider nonlinear elliptic Dirichlet problems driven by the sum of a p-Laplacian and a Laplacian (a (p,2) -equation). The reaction term at ±∞ is resonant with respect to any variational eigenvalue of the p-Laplacian. We prove two multiplicity theorems for such equations. |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2020_CVEE65-7_PapageorgiouVetroVetro.pdf | Articolo principale | Versione Editoriale | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.