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Abstract. We consider nonlinear elliptic Dirichlet problems driven by the sum of a

p-Laplacian and a Laplacian (a (p, 2)-equation). The reaction term at ±∞ is resonant

with respect to any variational eigenvalue of the p-Laplacian. We prove two multiplicity

theorems for such equations.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we study

the following nonlinear, nonhomogeneous elliptic equation

(1) −∆pu(z)−∆u(z) = f(z, u(z)) in Ω, u
∣∣∣
∂Ω

= 0, 2 < p < +∞.

In this problem ∆p denotes the p-Laplace differential operator defined by

∆pu = div (|∇u|p−2∇u) for all u ∈ W 1,p
0 (Ω).

When p = 2, then ∆2 = ∆ is the usual Laplace differential operator. Our aim is to prove

multiplicity theorems for problems which are resonant with respect to any variational

eigenvalue of (−∆p,W
1,p
0 (Ω)).

Elliptic equations driven by the sum of a p-Laplacian and a Laplacian, known as

(p, 2)-equations, arise in problems of mathematical physics. We refer to the works of

Benci-D’Avenia-Fortunato-Pisani [2] (quantum physics) and Cherfils-Il’yasov [5] (plasma

physics). Recently there have been some existence and multiplicity results for such

equations. We refer to the works of Cingolani-Degiovanni [6], Gasiński-Papageorgiou [10],

Papageorgiou-Rǎdulescu [17], Papageorgiou-Rǎdulescu-Repovš [18, 19], Papageorgiou-

Vetro [20], Papageorgiou-Vetro-Vetro [21], Papageorgiou-Winkert [22], Sun [26], Sun-

Zhang-Su [27]. The distinguishing feature of our work here, is that we deal with equations

which can be resonant with respect to any variational eigenvalue of (−∆p,W
1,p
0 (Ω)). Our

analysis of problem (1) combines variational tools based on the critical point theory,

together with truncation and comparison techniques and the theory of critical groups.

First we deal with problems which are resonant with respect to the principal eigenvalue

λ̂1(p) > 0. The starting point for this investigation, is the work of Papageorgiou-Rǎdulescu

[17]. In that paper, the authors deal with (p, 2)-equations which are resonant with respect
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to the principal eigenvalue λ̂1(p) > 0. In [17] the resonance occurs from the left of λ̂1(p)

in the sense that

λ̂1(p)|x|p − pF (z, x) → +∞ uniformly for a.a. z ∈ Ω, as x→ ±∞,

(here F (z, x) =
∫ x
0
f(z, s)ds). This makes the energy (Euler) functional of the problem

coercive and so the direct method of the calculus of variations can be used. In contrast

here we assume that the resonance occurs from the right at λ̂1(p) in the sense that

λ̂1(p)|x|p − pF (z, x) → −∞ uniformly for a.a. z ∈ Ω, as x→ ±∞.

As a result of this, the energy functional is indefinite and so different methods are

used. Then we deal with problems which are resonant with respect to higher variational

eigenvalues, extending the work of Papageorgiou-Vetro-Vetro [21].

2. Mathematical Background

Suppose X is a Banach space. By X∗ we denote the topological dual of X and by ⟨·, ·⟩
the duality brackets for the pair (X∗, X). Given φ ∈ C1(X,R), we say that φ satisfies

the “Cerami condition” (the “C-condition” for short), if the following property holds:

“Every sequence {un}n≥1 ⊆ X such that {φ(un)}n≥1 ⊆ R is bounded and (1 +

∥un∥X)φ′(un) → 0 in X∗ as n→ +∞, admits a strongly convergent subsequence”.

This compactness-type condition on φ, leads to a deformation theorem, from which one

can derive the minimax theory of the critical values of φ. A major result in that theory,

is the so-called “mountain pass theorem”, which we recall here.

Theorem 2.1. If X is a Banach space, φ ∈ C1(X,R) satisfies the C-condition, u0, u1 ∈
X, ∥u1 − u0∥X > ρ > 0, max{φ(u0), φ(u1)} < inf{φ(u) : ∥u − u0∥X = ρ} = ηρ and

c = infγ∈Γmax0≤t≤1 φ(γ(t)) where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}, then
c ≥ ηρ and c is a critical value of φ.

The following spaces will play a central role in our analysis of problem (1):

W 1,p
0 (Ω), H1

0 (Ω), C1
0(Ω) =

{
u ∈ C1(Ω) : u

∣∣∣
∂Ω

= 0
}
.

By ∥ · ∥ we denote the norm of the Sobolev space W 1,p
0 (Ω). On account of the Poincaré

inequality, we have

∥u∥ = ∥∇u∥p for all u ∈ W 1,p
0 (Ω).

The Banach space C1
0(Ω) is an ordered Banach space with positive (order) cone given

by

C+ = {u ∈ C1
0(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

int C+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣
∂Ω
< 0

}
.
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Here
∂u

∂n
= (∇u, n)RN with n(·) being the outward unit normal on ∂Ω.

Let Ap : W
1,p
0 (Ω) → W−1,p′(Ω)

(
1

p
+

1

p′
= 1

)
be the nonlinear map defined by

⟨Ap(u), y⟩ =
∫
Ω

|∇u|p−2(∇u,∇y)RNdz for all u, y ∈ W 1,p
0 (Ω).

This map has the following properties (see Gasiński-Papageorgiou [9], Problem 2.192, p.

279).

Proposition 2.2. The map Ap : W 1,p
0 (Ω) → W−1,p′(Ω) is bounded (that is, maps

bounded sets to bounded sets), continuous, strictly monotone (hence maximal monotone

too) and of type (S)+, that is, if un
w−→ u in W 1,p

0 (Ω) and lim supn→+∞⟨A(un), un−u⟩ ≤ 0,

then un → u in W 1,p
0 (Ω).

When p = 2, we write A2 = A and we have A ∈ L(H1
0 (Ω), H

−1(Ω)).

Suppose that f0 : Ω × R → R is a Carathéodory function (that is, for all x ∈ R
z → f(z, x) is measurable and for a.a. z ∈ Ω x→ f(z, x) is continuous) and

|f0(z, x)| ≤ a0(z)[1 + |x|r−1] for a.a. z ∈ Ω, all x ∈ R,

with a0 ∈ L∞(Ω) and 1 < r ≤ p∗, where p∗ =


Np

N − p
if p < N,

+∞ if N ≤ p,
(the critical Sobolev

exponent). We set F0(z, x) =
∫ x
0
f0(z, s)ds and consider the C1-functional φ0 : W

1,p
0 (Ω) →

R defined by

φ0(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

F0(z, u)dz for all u ∈ W 1,p
0 (Ω).

The next result is an outgrowth of the nonlinear regularity theory of Lieberman [12]

(Theorem 1) and can be found in Gasiński-Papageorgiou [8].

Proposition 2.3. If u0 ∈ W 1,p
0 (Ω) is a local C1

0(Ω)-minimizer of φ0, that is, there

exists ρ0 > 0 such that

φ0(u0) ≤ φ0(u0 + h) for all h ∈ C1
0(Ω), ∥h∥C1

0 (Ω) ≤ ρ0,

then u0 ∈ C1,α
0 (Ω) with α ∈ (0, 1) and u0 is also a local W 1,p

0 (Ω)-minimizer of φ0, that is,

there exists ρ1 > 0 such that

φ0(u0) ≤ φ0(u0 + h) for all h ∈ W 1,p
0 (Ω), ∥h∥ ≤ ρ1.

Next let us describe the spectrum of (−∆p,W
1,p
0 (Ω)). So, we consider the following

nonlinear eigenvalue problem

(2) −∆pu(z) = λ̂|u(z)|p−2u(z) in Ω, u
∣∣∣
∂Ω

= 0.
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We say that λ̂ ∈ R is an “eigenvalue” of (−∆p,W
1,p
0 (Ω)), if problem (2) admits a

nontrivial solution û ∈ W 1,p
0 (Ω), which is known as an “eigenfunction” corresponding to

λ̂. There exists a smallest eigenvalue λ̂1(p) > 0 which has the following properties:

(a) λ̂1(p) is isolated (that is, we can find ε > 0 such that (λ̂1(p), λ̂1(p) + ε) contains

no eigenvalues of (−∆p,W
1,p
0 (Ω))).

(b) λ̂1(p) is simple (that is, if û, v̂ ∈ W 1,p
0 (Ω) are eigenfunctions corresponding to

λ̂1(p), then û = ξv̂ for some ξ ∈ R \ {0}).
(c)

(3) λ̂1(p) = inf

[∥∇u∥pp
∥u∥pp

: u ∈ W 1,p
0 (Ω), u ̸= 0

]
.

The infimum in (3) is realized on the corresponding one dimensional eigenspace. It is

clear from the above properties, that the elements of this eigenspace do not change sign.

Moreover, by the nonlinear regularity theory we have that the elements of this eigenspace

belong in C1
0(Ω). By û1(p) we denote the Lp-normalized (that is, ∥û1(p)∥p = 1) positive

eigenfunction corresponding to λ̂1(p) > 0. The nonlinear maximum principle (see, for

example, Gasiński-Papageorgiou [7], p. 738) implies that û1(p) ∈ int C+.

Using the Fadell-Rabinowitz cohomological index ind(·) and the Ljusternik-Schnirelmann

minimax scheme, we can produce a whole sequence {λ̂k(p)}k≥1 of distinct eigenvalues such

that λ̂k(p) → +∞ as k → +∞. Let M = {u ∈ W 1,p
0 (Ω) : ∥u∥p = 1}. We have

λ̂k(p) = inf

[
max
u∈K

∥∇u∥pp : K ⊆M, K is compact, symmetric, ind(K) ≥ k

]
.

These eigenvalues are known as “variational eigenvalues” of (−∆p,W
1,p
0 (Ω)). We do not

know if these exhaust the spectrum of (−∆p,W
1,p
0 (Ω)). This is true if p = 2 (linear

eigenvalue problem) or if N = 1 (scalar eigenvalue problem). We mention that every

eigenvalue λ̂ ̸= λ̂1(p) has nodal (that is, sign changing) eigenfunctions.

We will encounter a weighted version of the eigenvalue problem (2). So, let m ∈ L∞(Ω),

m ̸≡ 0 and m(z) ≥ 0 for a.a. z ∈ Ω. We consider the following nonlinear eigenvalue

problem

−∆pu(z) = λ̃m(z)|u(z)|p−2u(z) in Ω, u
∣∣∣
∂Ω

= 0.

This problem has a spectrum analogous to that of (2). So, we generate a whole sequence

of distinct eigenvalues {λ̃k(p,m)}k≥1 such that λ̃k(p,m) → +∞ as k → +∞. In this case

the variational characterization of λ̃1(p,m) has the following form:

(4) λ̃1(p,m) = inf

[ ∥∇u∥pp∫
Ω
m(z)|u|pdz

: u ∈ W 1,p
0 (Ω), u ̸= 0

]
.

Using (4) we can easily prove the following strict monotonicity property for the map

m → λ̃1(p,m) (see Motreanu-Motreanu-Papageorgiou [15], Proposition 9.47 (d), p. 250

and Proposition 9.51, p. 251).
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Proposition 2.4. We have:

(a) If m1,m2 ∈ L∞(Ω), 0 ≤ m1(z) ≤ m2(z) for a.a. z ∈ Ω, m1 ̸≡ 0, m2 ̸≡ m1, then

λ̃1(p,m2) < λ̃1(p,m1).

(b) If m1,m2 ∈ L∞(Ω), 0 ≤ m1(z) < m2(z) for a.a. z ∈ Ω, m1 ̸≡ 0, then λ̃2(p,m2) <

λ̃2(p,m1).

For the linear eigenvalue problem (that is, p = 2), every eigenvalue λ̂k(2), k ∈ N, has
an eigenspace, denoted by E(λ̂k(2)), which is finite dimensional. We have

H1
0 (Ω) = ⊕k≥1E(λ̂k(2)).

For every k ∈ N, we set

Hk = ⊕k
m=1E(λ̂m(2)) and Ĥk = H

⊥
k = ⊕m≥k+1E(λ̂m(2)).

Of course we have H1
0 (Ω) = Hk ⊕ Ĥk.

In this case all eigenvalues λ̂k(2), k ∈ N, admit variational characterizations:

λ̂1(2) = inf

[
∥∇u∥22
∥u∥22

: u ∈ H1
0 (Ω), u ̸= 0

]
,(5)

λ̂k(2) = inf

[
∥∇u∥22
∥u∥22

: u ∈ Ĥk−1, u ̸= 0

]
= sup

[
∥∇u∥22
∥u∥22

: u ∈ Hk, u ̸= 0

]
for all k ≥ 2.(6)

In (6) both the infimum and the supremum are realized on the corresponding eigenspace

E(λ̂k(2)). Each eigenspace exhibits the “unique continuation property”, which says that

if u ∈ E(λ̂k(2)) vanishes on a set of positive measure, then u ≡ 0. Standard regularity

theory implies that E(λ̂k(2)) ⊆ C1
0(Ω) for all k ∈ N. Using the unique continuation

property, we can easily have the following useful inequalities (see Marano-Papageorgiou

[14])

Proposition 2.5. We have:

(a) If n ∈ N and η ∈ L∞(Ω), η(z) ≥ λ̂n(2) for a.a. z ∈ Ω, η ̸≡ λ̂n(2), then we can

find c0 > 0 such that

∥∇u∥22 −
∫
Ω

η(z)u2dz ≤ −c0∥u∥2 for all u ∈ Hn.

(b) If n ∈ N and η ∈ L∞(Ω), η(z) ≤ λ̂n(2) for a.a. z ∈ Ω, η ̸≡ λ̂n(2), then we can

find c1 > 0 such that

∥∇u∥22 −
∫
Ω

η(z)u2dz ≥ c1∥u∥2 for all u ∈ Ĥn−1.



6 N.S. PAPAGEORGIOU, C. VETRO, AND F. VETRO

Next let us recall some basic definitions and facts from the theory of critical groups.

So, let X be a Banach space, φ ∈ C1(X,R) and c ∈ R. We introduce the following sets

φc = {u ∈ X : φ(u) ≤ c},

Kφ = {u ∈ X : φ′(u) = 0},

Kc
φ = {u ∈ Kφ : φ(u) = c}.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X and k ∈ N0. By Hk(Y1, Y2)

we denote the kth-relative singular homology group for the pair (Y1, Y2) with integer

coefficients. Given an isolated u ∈ Kc
φ, the critical groups of φ at u are defined by

Ck(φ, u) = Hk(φ
c ∩ U,φc ∩ U \ {u}) for all k ∈ N0,

where U is a neighborhood of u such that Kφ ∩ φc ∩ U = {u}. The excision property of

singular homology implies that the above definition of critical groups is independent of

the particular choice of the isolating neighborhood U .

Suppose that φ satisfies the C-condition and inf φ(Kφ) > −∞. Let c < inf φ(Kφ).

Then the critical groups of φ at infinity, are defined by

Ck(φ,∞) = Hk(X,φ
c) for all k ∈ N0.

This definition is independent of the choice of the level c < inf φ(Kφ). Indeed, if c
′ <

c < inf φ(Kφ), then φ
c′ is a strong deformation retract of φc and so

Hk(X,φ
c) = Hk(X,φ

c′) for all k ∈ N0

(see Motreanu-Motreanu-Papageorgiou [15], Corollary 6.15(a), p. 145). Suppose thst

φ ∈ C1(X,R) and assume that φ satisfies the C-condition and Kφ is finite. We set

M(t, u) = Σk≥0rankCk(φ, u)t
k for all t ∈ R, all u ∈ Kφ,

P (t,∞) = Σk≥0rankCk(φ,∞)tk for all t ∈ R.

The “Morse relation” says that

(7) Σu∈KφM(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R,

with Q(t) = Σk≥0βkt
k is a formal series in t ∈ R with nonnegative integer coefficients.

Finally we fix some basic notation. So, for x ∈ R, let x± = max{±x, 0}. Then for

u ∈ W 1,p
0 (Ω), we define u±(·) = u(·)±. We have

u± ∈ W 1,p
0 (Ω), u = u+ − u−, |u| = u+ + u−.

Also given a measurable function g : Ω×R → R (for example, a Carathéodory function),

we set

Ng(u)(·) = g(·, u(·)) for all u ∈ W 1,p
0 (Ω),

the Nemytskii (superposition) map corresponding to g. Finally, by | · |N we denote the

Lebesgue measure on RN .
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3. Resonance with respect to λ̂1(p) > 0

In this section we study (p, 2)-equations which at ±∞ are resonant with respect to

λ̂1(p) > 0. The resonance occurs from the right of the principal eigenvalue λ̂1(p).

The hypotheses on the reaction term f(z, x), are the following:

H(f)1: f : Ω × R → R is a measurable function such that for a.a. z ∈ Ω f(z, 0) = 0,

f(z, ·) ∈ C1(R) and

(i) |f ′
x(z, x)| ≤ a(z)[1 + |x|r−2] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω), p ≤ r < p∗;

(ii) there exists η ∈ L∞(Ω) such that η(z) < λ̂2(p) for a.a. z ∈ Ω and

λ̂1(p) ≤ lim inf
x→±∞

f(z, x)

|x|p−2x
≤ lim sup

x→±∞

f(z, x)

|x|p−2x
≤ η(z) uniformly for a.a. z ∈ Ω;

(iii) there exist τ ∈ (2, p∗] and β0 > 0 such that

β0 ≤ lim inf
x→±∞

pF (z, x)− f(z, x)x

|x|τ
uniformly for a.a. z ∈ Ω,

with F (z, x) =
∫ x
0
f(z, s)ds;

(iv) there exist m ∈ N and δ0 > 0 such that

f ′
x(z, 0) ≤ λ̂m+1(2) for a.a. z ∈ Ω, f ′

x(·, 0) ̸≡ λ̂m+1(2),

λ̂m(2)x
2 ≤ f(z, x)x for a.a. z ∈ Ω, all |x| ≤ δ0.

Remark 3.1. Hypothesis H(f)1(ii) permits asymptotically at ±∞ resonance with

respect to the principal eigenvalue λ̂1(p) > 0. The resonance occurs from the right of

λ̂1(p) in the sense that

(8) pF (z, x)− λ̂1(p)|x|p → +∞ uniformly for a.a. z ∈ Ω, as x→ ±∞.

To see this, note that hypothesis H(f)1(iii) implies that given any ξ > 0 we can find

M1 =M1(ξ) > 0 such that

(9) pF (z, x)− f(z, x)x ≥ ξ for a.a. z ∈ Ω, all |x| ≥M1.

We have

d

dx

[
F (z, x)

|x|p

]
=
f(z, x)|x|p − p|x|p−2xF (z, x)

|x|2p

=
f(z, x)x− pF (z, x)

|x|px

≤ −ξ
xp+1 if x ≥M1,

≥ −ξ
|x|px if x ≤ −M1

(see (9)),

⇒ F (z, y)

|y|p
− F (z, x)

|x|p
≤ −ξ

p

[
1

|x|p
− 1

|y|p

]
(10)

for a.a. z ∈ Ω, all |y|, |x| ≥M1.
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Hypothesis H(f)1(ii) implies that

λ̂1(p) ≤ lim inf
x→±∞

pF (z, x)

|x|p
≤ lim sup

x→±∞

pF (z, x)

|x|p
≤ η(z)(11)

uniformly for a.a. z ∈ Ω.

So, if in (10) we let y → ±∞ and we use (11), then

(12) pF (z, x)− λ̂1(p)|x|p ≥ ξ for a.a. z ∈ Ω, all |x| ≥M1.

Since ξ > 0 is arbitrary, from (12) we infer that (8) holds.

Finally hypothesisH(f)1(iv) permits also resonance at zero with respect to any eigenvalue

of (−∆, H1
0 (Ω)).

Let φ : W 1,p
0 (Ω) → R be the energy functional for problem (1) defined by

φ(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

F (z, u)dz for all u ∈ W 1,p
0 (Ω).

Evidently φ ∈ C2(W 1,p
0 (Ω)).

Proposition 3.2. If hypotheses H(f)1 hold, then the energy functional φ satisfies the

C-condition.

Proof. Let {un}n≥1 ⊆ W 1,p
0 (Ω) be a sequence such that

(13) |φ(un)| ≤M2 for some M2 > 0, all n ∈ N,

(14) (1 + ∥un∥)φ′(un) → 0 in W−1,p′(Ω) as n→ +∞.

From (14) we have

(15)
∣∣∣⟨Ap(un), h⟩+ ⟨A(un), h⟩ −

∫
Ω

f(z, un)hdz
∣∣∣ ≤ εn∥h∥

1 + ∥un∥

for all h ∈ W 1,p
0 (Ω), with εn → 0+. In (15) we choose h = un ∈ W 1,p

0 (Ω). Then

(16) ∥∇un∥pp + ∥∇un∥22 −
∫
Ω

f(z, un)undz ≤ εn for all n ∈ N.

On the other hand, from (13) we have

(17) −∥∇un∥pp −
p

2
∥∇un∥22 +

∫
Ω

pF (z, un)dz ≤ pM2 for all n ∈ N.

Adding (16) and (17), we obtain∫
Ω

[pF (z, un)− f(z, un)un]dz

≤c2 +
(p
2
− 1

)
∥∇un∥22

≤c3[1 + ∥un∥2] for some c2, c3 > 0, all n ∈ N (recall that p > 2).(18)
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Suppose that {un}n≥1 ⊆ W 1,p
0 (Ω) is unbounded. By passing to a suitable subsequence if

necessary, we may assume that

(19) ∥un∥ → +∞.

Set yn =
un

∥un∥
, n ∈ N. We have ∥yn∥ = 1 for all n ∈ N and so, we may assume that

(20) yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω) as n→ +∞.

From (15) we have

⟨Ap(yn), h⟩+
1

∥un∥p−2
⟨A(yn), h⟩ −

∫
Ω

Nf (un)

∥un∥p−1
h dz ≤ εn∥h∥

(1 + ∥un∥)∥un∥p−1
(21)

for all n ∈ N. Hypotheses H(f)1(i), (ii) imply that{
Nf (un)

∥un∥p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded.

This fact and hypothesis H(f)1(ii) imply that, at least for a subsequence, we have

(22)
Nf (un)

∥un∥p−1

w−→ η̂(z)|y|p−2y in Lp
′
(Ω) as n→ +∞,

λ̂1(p) ≤ η̂(z) ≤ η(z) for a.a. z ∈ Ω, (see Aizicovici-Papageorgiou-Staicu [1], proof of

Proposition 30).

In (21) we choose h = yn − y ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and use (19),

(20), (22) and the fact that p > 2. We obtain

lim
n→+∞

⟨Ap(yn), yn − y⟩ = 0,

⇒ yn → y in W 1,p
0 (Ω) and so ∥y∥ = 1, (see Proposition 2.2)(23)

So, if in (21) we pass to limit as n→ +∞ and use (23) and (22), then

⟨Ap(y), h⟩ =
∫
Ω

η̂(z)|y|p−2yh dz for all h ∈ W 1,p
0 (Ω),

⇒ −∆py(z) = η̂(z)|y(z)|p−2y(z) for a.a. z ∈ Ω, y
∣∣∣
∂Ω

= 0.(24)

Recall that

λ̂1(p) ≤ η̂(z) ≤ η(z) for a.a. z ∈ Ω (see (22)).

First assume that η̂ ̸≡ λ̂1(p). We have

λ̃1(p, η̂) < λ̃1(p, λ̂1(p)) = 1 and 1 = λ̃2(p, λ̂2(p)) < λ̃2(p, η̂)

(see Proposition 2.4). So, from (24), we infer that y = 0, which contradicts (23).

Next assume that η̂(z) = λ̂1(p) for a.a. z ∈ Ω. Then from (24) and (23) it follows that

y = βû1(p) with β ∈ R \ {0}.



10 N.S. PAPAGEORGIOU, C. VETRO, AND F. VETRO

Without any loss of generality we may assume that β > 0 (the reasoning is similar if

β < 0). We have y(z) > 0 for all z ∈ Ω and so

un(z) → +∞ for a.a. z ∈ Ω (see (19)).

On account of hypothesis H(f)1(iii) we have that

β0 ≤ lim inf
n→+∞

pF (z, un(z))− f(z, un(z))un(z)

|un(z)|τ
for a.a. z ∈ Ω,

⇒ 0 < c4 ≤ lim inf
n→+∞

∫
Ω

pF (z, un)− f(z, un)un
|un|τ

yτndz

(by Fatou’s lemma, see hypothesis H(f)1(iii)),

⇒ 0 < lim inf
n→+∞

1

∥un∥τ

∫
Ω

[pF (z, un)− f(z, un)un]dz.(25)

On the other hand from (18) we have

1

∥un∥τ

∫
Ω

[pF (z, un)− f(z, un)un]dz ≤ c3

[
1

∥un∥τ
+

1

∥un∥τ−2

]
for all n ∈ N,

Since τ > 2, using (19), we conclude that

(26) lim sup
n→+∞

1

∥un∥τ

∫
Ω

[pF (z, un)− f(z, un)un]dz ≤ 0.

Comparing (25) and (26), we have a contradiction. This proves that {un}n≥1 ⊆ W 1,p
0 (Ω)

is bounded. So, we may assume that

(27) un
w−→ u in W 1,p

0 (Ω) and un → u in Lp(Ω).

In (15) we choose h = un − u ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and use (27).

Then

lim
n→+∞

[⟨Ap(un), un − u⟩+ ⟨A(un), un − u⟩] = 0,

⇒ lim sup
n→+∞

[⟨Ap(un), un − u⟩+ ⟨A(u), un − u⟩] ≤ 0

(exploiting the monotonicity of A(·)),

⇒ lim sup
n→+∞

⟨Ap(un), un − u⟩ ≤ 0 (see (27)),

⇒ un → u in W 1,p
0 (Ω) (see Proposition 2.2).

This proves that φ satisfies the C-condition. □

Proposition 3.3. If hypotheses H(f)1 hold, then Ck(φ, 0) = δk,dmZ for all k ∈ N0

with dm = dim⊕m
i=1 E(λ̂i(2)).

Proof. We consider the C2-functional ψ̂0 : H
1
0 (Ω) → R defined by

ψ̂0(u) =
1

2
∥∇u∥22 −

∫
Ω

F (z, u)dz for all u ∈ H1
0 (Ω).
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Hypothesis H(f)1(iv) implies that given ε > 0, we can find δ = δ(ε) > 0 such that

(28) F (z, x) ≤ 1

2
[f ′
x(z, 0) + ε]x2 for a.a. z ∈ Ω, all |x| ≤ δ.

We consider the following orthogonal direct sum decomposition

H1
0 (Ω) = Hm ⊕ Ĥm,

where Hm = ⊕m
i=1E(λ̂i(2), Ĥm = H

⊥
m = ⊕i≥m+1E(λ̂i(2)). The space Hm is finite

dimensional. So, all norms are equivalent. Hence we can find ρ0 > 0 such that

u ∈ Hm, ∥u∥ ≤ ρ0 ⇒ |u(z)| ≤ δ0 for all z ∈ Ω.

Here δ0 > 0 is as postulated by hypothesis H(f)1(iv). Then for u ∈ Hm with ∥u∥ ≤ ρ0,

on account of hypothesis H(f)1(iv) we have

(29) ψ̂0(u) ≤
1

2
∥∇u∥22 −

λ̂m(2)

2
∥u∥22 ≤ 0 (see (6)).

On the other hand, from (28) and hypothesis H(f)1(i), we have

F (z, x) ≤ 1

2
[f ′
x(z, 0) + ε]x2 + c5|x|q for a.a. z ∈ Ω, all x ∈ R

with c5 > 0, 2 < q ≤ 2∗. Then for u ∈ Ĥm, we have

ψ̂0(u) ≥
1

2
∥∇u∥22 −

1

2

∫
Ω

f ′
x(z, 0)u

2dz − ε

2λ̂1(2)
∥u∥2 − c6∥u∥q

for some c6 > 0 (see (3) and (5))

≥ 1

2

[
c7 −

ε

λ̂1(2)

]
∥u∥2 − c6∥u∥q for some c7 > 0

(see Proposition 2.5(b)).

Choosing ε ∈ (0, λ̂1(2)c7), we obtain

(30) ψ̂0(u) ≥ c8∥u∥2 − c6∥u∥q for some c8 > 0, all u ∈ W 1,p
0 (Ω).

Since q > 2 from (30) we see that we can find ρ1 ∈ (0, 1) small such that

(31) ψ̂0(u) > 0 for all u ∈ Ĥm, with 0 < ∥u∥ ≤ ρ1.

From (29) and (31), we infer that ψ̂0 has a local linking at u = 0 with respect to

decomposition H1
0 (Ω) = Hm ⊕ Ĥm. Invoking Proposition 2.3 of Su [25], we have

(32) Ck(ψ̂0, 0) = δk,dmZ for all k ∈ N0.

Let ψ0 = ψ̂0

∣∣
W 1,p

0 (Ω)
. The space W 1,p

0 (Ω) is dense in H1
0 (Ω). So, from Palais [16] (see also

Chang [3], p. 14) we have

(33) Ck(ψ0, 0) = Ck(ψ̂0, 0) = δk,dmZ for all k ∈ N0 (see (32)).
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We have

|φ(u)− ψ0(u)| =
1

p
∥∇u∥pp,

|⟨φ′(u)− ψ′
0(u), h⟩| =

∫
Ω

|∇u|p−1(∇u,∇h)RNdz,

⇒ |⟨φ′(u)− ψ′
0(u), h⟩| ≤ ∥∇u∥p−1

p ∥∇h∥p,

⇒ ∥φ′(u)− ψ′
0(u)∥∗ ≤ ∥∇u∥p−1

p .

Then from the C1-continuity of critical groups (see Gasiński-Papageorgiou [9], Theorem

5.126, p. 836), we have

Ck(φ, 0) = Ck(ψ0, 0) for all k ∈ N0,

⇒ Ck(φ, 0) = δk,dmZ for all k ∈ N0 (see (33)).

□

Proposition 3.4. If hypotheses H(f)1 hold, then Ck(−φ,∞) = δk,1Z for all k ∈ N0

and Ck(φ, u) = Ck(−φ, u) for all u ∈ Kφ = K−φ, all k ∈ N0.

Proof. Let λ ∈ (λ̂1(p), λ̂2(p)) and consider the C1-functional γ : W 1,p
0 (Ω) → R defined

by

γ(u) =
1

p
∥∇u∥pp −

λ

p
∥u∥pp for all u ∈ W 1,p

0 (Ω).

We consider the homotopy

h(t, u) = (1− t)(−φ)(u) + tγ(u) for all t ∈ [0, 1], all u ∈ W 1,p
0 (Ω).

Claim: We can find η ∈ R and δ > 0 such that

(34) h(t, u) ≤ η ⇒ (1 + ∥u∥)∥h′u(t, u)∥∗ ≥ δ for all t ∈ [0, 1].

Arguing by contradiction, suppose that the Claim is not true. Since h(·, ·) maps

bounded sets to bounded sets, we can find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ W 1,p
0 (Ω)

such that

tn → t, ∥un∥ → +∞, h(tn, un) → −∞ and (1 + ∥un∥)h′u(tn, un) → 0(35)

in W−1,p′(Ω) as n→ +∞.

From the last convergence in (35), we have∣∣⟨Ap(un), h⟩+ (1− tn)⟨A(un), h⟩ − (1− tn)

∫
Ω

f(z, un)hdz(36)

− tnλ

∫
Ω

|un|p−2unhdz
∣∣∣ ≤ εn∥h∥

1 + ∥un∥
for all h ∈ W 1,p

0 (Ω) with εn → 0+.

In (36) we choose h = un ∈ W 1,p
0 (Ω). Then

(37) ∥∇un∥pp + (1− tn)∥∇un∥22 − (1− tn)

∫
Ω

f(z, un)undz − tnλ∥un∥pp ≤ εn
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for all n ∈ N. Also, from the third convergence in (35), we have

(38) −∥∇un∥pp −
p

2
(1− tn)∥∇un∥22 + (1− tn)

∫
Ω

pF (z, un)dz + tnλ∥un∥pp ≤ −1

for all n ≥ n0. We add (37) and (38). Since εn → 0+, we obtain

(39) (1− tn)

∫
Ω

[pF (z, un)− f(z, un)un]dz ≤ (1− tn)
[p
2
− 1

]
∥∇un∥22

for all n ≥ n1 ≥ n0. Note that h(1, u) = γ(u) and since λ ∈ (λ̂1(p), λ̂2(p)), we have

Kγ = {0}.

It follows that we may assume that tn ̸= 1 for all n ∈ N. So, from (39) we have

(40)

∫
Ω

[pF (z, un)− f(z, un)un]dz ≤
[p
2
− 1

]
∥∇un∥22 for all n ≥ n1.

We argue as in the proof of Proposisition 3.2. So, suppose that {un}n≥1 ⊆ W 1,p
0 (Ω) is

unbounded. We may assume, at least for a subsequence, that

(41) ∥un∥ → +∞.

Let yn =
un

∥un∥
, n ∈ N. Then ∥yn∥ = 1 for all n ∈ N and so we may assume that

(42) yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω) as n→ +∞.

From (36) we have∣∣∣⟨Ap(yn), h⟩+ 1− tn
∥un∥p−2

⟨A(yn), h⟩ − (1− tn)

∫
Ω

Nf (un)

∥un∥p−1
hdz

− tnλ

∫
Ω

|yn|p−2ynhdz
∣∣∣ ≤ εn∥h∥

(1 + ∥un∥)∥un∥p−1
for all n ∈ N.(43)

Choosing h = yn − y ∈ W 1,p
0 (Ω), passing to the limit as n → +∞ and using (22), (41),

(42) and the fact that 2 < p, from (43) we obtain

lim
n→+∞

⟨Ap(yn), yn − y⟩ = 0

⇒ yn → y in W 1,p
0 (Ω) and so ∥y∥ = 1.(44)

Passing to the limit as n→ +∞ in (43) and using (22), (41), (44) and the fact that 2 < p,

we obtain

⟨Ap(u), h⟩ =
∫
Ω

[(1− t)η̂(z) + tλ]|y|p−2yhdz for all h ∈ W 1,p
0 (Ω),

⇒ −∆py(z) = [(1− t)η̂(z) + tλ]|y(z)|p−2y(z) for a.a. z ∈ Ω, y
∣∣∣
∂Ω

= 0.(45)

If t ̸= 0, then (1 − t)η̂(z) + tλ ≥ λ̂1(p) for a.a. z ∈ Ω, (1 − t)η̂ + tλ ̸≡ λ̂1(p). Then from

(45) and Proposition 2.4, we infer that y ≡ 0, a contradiction (see (44)).
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If t = 0 and η̂ ̸≡ λ̂1(p), then the above argument remains valid. Finally, if t = 0 and

η̂(z) = λ̂1(p), for a.a. z ∈ Ω, then we argue as in the proof of Proposition 3.2 and using

hypothesis H(f)1(iii), we contradict (40).

Therefore the Claim is true and (34) holds. Invoking Theorem 5.1.21, p. 334 of Chang

[4] (see also Theorem 3.2 of Liang-Su [13]), we have

(46) Ck(−φ,∞) = Ck(γ,∞) for all k ∈ N0.

Since λ ∈ (λ̂1(p), λ̂2(p)), we have

(47) Ck(γ,∞) = Ck(γ, 0) for all k ∈ N0.

But from Perera [23], we have

Ck(γ, 0) = δk,1Z for all k ∈ N0,

⇒ Ck(−φ,∞) = δk,1Z for all k ∈ N0 (see (46), (47)).(48)

Clearly, Kφ = K−φ. We assume that this set is finite or otherwise we already have an

infinity of solutions and so we are done.

Consider the homotopy

ĥ(t, u) = (1− t)φ(u) + t(−φ)(u) = (1− 2t)φ(u).

Since Kφ is finite, the homotopy invariance property of critical groups (see Gasiński-

Papageorgiou [9], Theorem 5.125, p. 836), implies that

Ck(φ, u) = Ck(−φ, u) for all k ∈ N0, all u ∈ Kφ = K−φ.

□

Now we are ready for the first multiplicity theorem for problem (1). It covers the case

of problems resonant with respect to the principal eigenvalue λ̂1(p) > 0 (resonance from

the right).

Theorem 3.5. If hypotheses H(f)1 hold, then problem (1) admits at least two nontrivial

solutions u0, û ∈ C1
0(Ω).

Proof. From Proposition 3.4, we known that

Ck(−φ,∞) = δk,1Z for all k ∈ N0.

So, we can find u0 ∈ K−φ = Kφ such that

0 ̸= C1(−φ, u0) = C1(φ, u0) (see Proposition 3.4).

Since φ ∈ C2(W 1,p
0 (Ω)), from Papageorgiou-Rǎdulescu [17], we have

(49) Ck(φ, u0) = δk,1Z for all k ∈ N0.
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From Proposition 3.3 we have

(50) Ck(φ, 0) = δk,dmZ for all k ∈ N0.

From the Morse relation (see (7)), with t = −1, we have

Σk∈N0rankCk(φ,∞) = Σu∈KφΣk∈N0rankCk(φ, u)

= Σu∈K−φΣk∈N0rankCk(−φ, u) (see Proposition 3.4)

= Σk∈N0rankCk(−φ,∞) = 1 (see (48)).(51)

Suppose that Kφ = {0, u0}. Then from (49), (50), (51), we have

(−1)1 + (−1)dm = 1,

a contradiction. Therefore there exists û ∈ Kφ, û /∈ {0, u0}. Evidently û is the second

nontrivial solution of (1). From Ladyzhenskaya-Ural′tseva [11] (Theorem 7.1, p. 286), we

have u0, û ∈ L∞(Ω).

Invoking Theorem 1 of Lieberman [12], we conclude that u0, û ∈ C1
0(Ω). □

4. Resonance with respect to higher eigenvalues

In this section we investigate what happens when we have resonance with respect to a

nonprincipal variational eigenvalue λ̂m(p), m ≥ 2.

The hypotheses on the reaction term f(z, x), are the following:

H(f)2: f : Ω × R → R is a measurable function such that for a.a. z ∈ Ω f(z, 0) = 0,

f(z, ·) ∈ C1(R) and

(i) |f ′
x(z, x)| ≤ a(z)[1 + |x|r−2] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω), p ≤ r < p∗;

(ii) there exists integer m ≥ 2 such that

lim
x→±∞

f(z, x)

|x|p−2x
= λ̂m(p) uniformly for a.a. z ∈ Ω;

(iii) f(z, x)x− pF (z, x) → +∞ uniformly for a.a. z ∈ Ω as x→ ±∞;

(iv) f ′
x(z, 0) = limx→0

f(z, x)

x
uniformly for a.a. z ∈ Ω, f ′

x(z, 0) ≥ ĉ > 0 for a.a. z ∈ Ω

and f ′
x(z, 0) ≤ λ̂1(2) for a.a. z ∈ Ω, f ′

x(·, 0) ̸≡ λ̂1(2).

We introduce the positive and negative truncations of f(z, ·), namely the Carathéodory

functions

f±(z, x) = f(z,±x±).

We set F±(z, x) =
∫ x
0
f±(z, s)ds and consider the C1-functionals φ± : W 1,p

0 (Ω) → R
defined by

φ±(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

F±(z, u)dz for all u ∈ W 1,p
0 (Ω).
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As before φ : W 1,p
0 (Ω) → R is the energy functional for problem (1) defined by

φ(u) =
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

∫
Ω

F (z, u)dz for all u ∈ W 1,p
0 (Ω).

We have φ ∈ C2(W 1,p
0 (Ω)).

First we show that these functionals satisfy the compactness condition.

Proposition 4.1. If hypotheses H(f)2 hold, then the functionals φ and φ± satisfy the

C-condition.

Proof. Let {un}n≥1 ⊆ W 1,p
0 (Ω) be a sequence such that

(52) |φ(un)| ≤M3 for some M3 > 0, all n ∈ N,

(53) (1 + ∥un∥)φ′(un) → 0 in W−1,p′(Ω) as n→ +∞.

From (53) we have

(54)
∣∣∣⟨Ap(un), h⟩+ ⟨A(un), h⟩ −

∫
Ω

f(z, un)hdz
∣∣∣ ≤ εn∥h∥

1 + ∥un∥

for all h ∈ W 1,p
0 (Ω), with εn → 0+. In (54) we choose h = un ∈ W 1,p

0 (Ω). Then

(55) −∥∇un∥pp − ∥∇un∥22 +
∫
Ω

f(z, un)undz ≤ εn for all n ∈ N.

On the other hand, from (52) we have

(56) ∥∇un∥pp +
p

2
∥∇un∥22 −

∫
Ω

pF (z, un)dz ≤ pM3 for all n ∈ N.

We add (55) and (56). Since 2 < p, we obtain∫
Ω

[f(z, un)un − pF (z, un)]dz ≤M4 for some M4 > 0, all n ∈ N.(57)

Suppose that

(58) ∥un∥ → +∞ as n→ +∞.

Let yn =
un

∥un∥
, n ∈ N. Then ∥yn∥ = 1 for all n ∈ N and so, we may assume that

(59) yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω).

From (54) we have∣∣∣⟨Ap(yn), h⟩+ 1

∥un∥p−2
⟨A(yn), h⟩ −

∫
Ω

Nf (un)

∥un∥p−1
h dz

∣∣∣ ≤ εn∥h∥
(1 + ∥un∥)∥un∥p−1

(60)

for all n ∈ N. Hypotheses H(f)2(i), (ii) imply that

(61) |f(z, x)| ≤ c9[1 + |x|p−1] for a.a. z ∈ Ω, all x ∈ R, some c9 > 0.
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From (61) it follows that

(62)

{
Nf (un)

∥un∥p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded.

So, by passing to a subsequence if necessary and using hypothesis H(f)2(ii), we have

Nf (un)

∥un∥p−1

w−→ λ̂m(p)|y|p−2y in Lp
′
(Ω).

In (60) we choose h = yn − y ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and use (58),

(59), (62) and the fact that p > 2. Then

lim
n→+∞

⟨Ap(yn), yn − y⟩ = 0,

⇒ yn → y in W 1,p
0 (Ω) and so ∥y∥ = 1, (see Proposition 2.2).(63)

Let Ω0 = {z ∈ Ω : y(z) ̸= 0}. Evidently |Ω0|N > 0 (see (63)) and

|un(z)| → +∞ for a.a. z ∈ Ω0.

Then hypothesis H(f)2(iii) implies that

f(z, un(z))un(z)− pF (z, un(z)) → +∞ for a.a. z ∈ Ω0,

⇒
∫
Ω0

[f(z, un)un − pF (z, un)]dz → +∞ (by Fatou’s lemma).(64)

Hypotheses H(f)2(i), (iii) imply that

(65) f(z, x)x− pF (z, x) ≥ −c10 for a.a. z ∈ Ω, all x ∈ R, some c10 > 0.

Then we have ∫
Ω

[f(z, un)un − pF (z, un)]dz

=

∫
Ω0

[f(z, un)un − pF (z, un)]dz +

∫
Ω\Ω0

[f(z, un)un − pF (z, un)]dz

≥
∫
Ω0

[f(z, un)un − pF (z, un)]dz − c10|Ω|N (see (65)),

⇒
∫
Ω

[f(z, un)un − pF (z, un)]dz → +∞ as n→ +∞ (see (64)).(66)

Comparing (57) and (66), we have a contradiction.

Therefore we can say that

{un}n≥1 ⊆ W 1,p
0 (Ω) is bounded.

So, we may assume that

(67) un
w−→ u in W 1,p

0 (Ω) and un → u in Lp(Ω).
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In (54) we choose h = un − u ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and use (67).

Then

lim
n→+∞

[⟨Ap(un), un − u⟩+ ⟨A(un), un − u⟩] = 0,

⇒ lim sup
n→+∞

[⟨Ap(un), un − u⟩+ ⟨A(u), un − u⟩] ≤ 0 (since A(·) is monotone),

⇒ lim sup
n→+∞

⟨Ap(un), un − u⟩ ≤ 0 (see (67)),

⇒ un → u in W 1,p
0 (Ω) (see Proposition 2.2).

Therefore the functional φ satisfies the C-condition.

Next we consider the functional φ+.

We consider a sequence {un}n≥1 ⊆ W 1,p
0 (Ω) such that

(68) |φ+(un)| ≤M5 for some M5 > 0, all n ∈ N,

(69) (1 + ∥un∥)φ′
+(un) → 0 in W−1,p′(Ω) as n→ +∞.

From (69) we have

(70)
∣∣∣⟨Ap(un), h⟩+ ⟨A(un), h⟩ −

∫
Ω

f+(z, un)hdz
∣∣∣ ≤ εn∥h∥

1 + ∥un∥

for all h ∈ W 1,p
0 (Ω), with εn → 0+. In (70) we choose h = −u−n ∈ W 1,p

0 (Ω). Then

∥∇u−n ∥pp + ∥∇u−n ∥22 ≤ εn for all n ∈ N,

⇒ u−n → 0 in W 1,p
0 (Ω).(71)

From (68) and (71), we have

(72) ∥∇u+n ∥pp +
p

2
∥∇u+n ∥22 −

∫
Ω

pF (z, u+n )dz ≤M6 for some M6 > 0, all n ∈ N.

Also, from (70) with h = u+n ∈ W 1,p
0 (Ω), we have

(73) −∥∇u+n ∥pp − ∥∇u+n ∥22 +
∫
Ω

f(z, u+n )u
+
n dz ≤ εn for all n ∈ N.

Adding (72) and (73) and recalling that 2 < p, we obtain∫
Ω

[f(z, u+n )u
+
n − pF (z, u+n )]dz ≤M7 for some M7 > 0, all n ∈ N.(74)

We use (74) and a contradiction argument and as before (see the part of the proof after

(57) until (66)), we show that

{u+n }n≥1 ⊆ W 1,p
0 (Ω) is bounded,

⇒ {un}n≥1 ⊆ W 1,p
0 (Ω) is bounded (see (71)).

Using this fact and Proposition 2.2, as before we conclude that φ+ satisfies the C-

condition.
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Similarly we show that φ− satisfies the C-condition. □

Proposition 4.2. If hypotheses H(f)2 hold, then u = 0 is a local minimizer for the

functionals φ± and φ.

Proof. We do the proof for the functional φ+, the proofs for the functionals φ− and

φ being similar.

On account of hypothesis H(f)2(iv), given ε > 0, we can find δ = δ(ε) > 0 such that

(75) F (z, x) ≤ 1

2
[f ′
x(z, 0) + ε]x2 for a.a. z ∈ Ω, all |x| ≤ δ.

Let u ∈ C1
0(Ω) with ∥u∥C1

0 (Ω) ≤ δ. We have

φ+(u) ≥
1

p
∥∇u∥pp +

1

2
∥∇u∥22 −

1

2

∫
Ω

f ′
x(z, 0)(u

+)2dz − ε

2
∥u+∥22 (see (75))

≥ 1

2

[
∥∇u+∥22 −

∫
Ω

f ′
x(z, 0)(u

+)2dz − ε

λ̂1(2)
∥∇u+∥22

]
+

1

2
∥∇u−∥22

+
1

p
∥∇u∥pp (see (5))

≥ 1

p
∥∇u∥pp (using Proposition 2.5(b) and choosing ε > 0 small),

⇒ u = 0 is a local C1
0(Ω)-minimizer of φ+,

⇒ u = 0 is a local W 1,p
0 (Ω)-minimizer of φ+ (see Proposition 2.3).

□

Let W+ = {u ∈ W 1,p
0 (Ω) : u(z) ≥ 0 for a.a. z ∈ Ω}. We can easily verify that

Kφ+ ⊆ W+ and Kφ− ⊆ −W+.

So, we may assume that both Kφ+ and Kφ− are finite. Otherwise we already have an

infinity of nontrivial positive and negative solutions for problem (1).

Proposition 4.3. If hypotheses H(f)2 hold, then problem (1) admits at least two

nontrivial constant sign solutions u0 ∈ intC+ and v0 ∈ −intC+.

Proof. Proposition 4.2 implies that we can find ρ ∈ (0, 1) small such that

(76) φ+(0) = 0 < inf [φ+(u) : ∥u∥ = ρ] = m+

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29). From Proposition 4.1

we know that

(77) φ+ satisfies the C-condition.

Hypotheses H(f)2(i), (ii) imply that given ε > 0, we can find c11 = c11(ε) > 0 such that

(78) F (z, x) ≥ 1

p

[
λ̂m(p)− ε

]
|x|p − c11 for a.a. z ∈ Ω, all x ∈ R.
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Recall that û1(p) ∈ intC+. For t > 0, we have

φ+(tû1(p)) ≤
λ̂1(p)

p
tp +

t2

2
∥∇û1(p)∥22 −

λ̂m(p)− ε

p
tp + c11|Ω|N

(see (78) and recall that ∥û1(p)∥p = 1)

=
tp

p

[
λ̂1(p) + ε− λ̂m(p)

]
+
t2

2
∥∇û1(p)∥22 + c11|Ω|N .(79)

We choose 0 < ε < λ̂m(p) − λ̂1(p) (recall that m ≥ 2). Since 2 < p, from (79) it follows

that

(80) φ+(tû1(p)) → −∞ as t→ +∞.

Then (76), (77) and (80) permit the use of Theorem 2.1 (the mountain pass theorem).

So, we can find u0 ∈ W 1,p
0 (Ω) such that

u0 ∈ Kφ+ ⊆ W+ and m+ ≤ φ+(u0) = φ(u0), u0 ̸= 0 (see (76)).

We have

⟨Ap(u0), h⟩+ ⟨A(u0), h⟩ =
∫
Ω

f(z, u0)hdz for all h ∈ W 1,p
0 (Ω),

⇒ −∆pu0(z)−∆u0(z) = f(z, u0(z)) for a.a. z ∈ Ω, u0

∣∣∣
∂Ω

= 0.(81)

Hypotheses H(f)2(i), (iv) imply that given ρ > 0, we can find ξ̂ρ > 0 such that

(82) f(z, x)x+ ξ̂ρ|x|p ≥ 0 for a.a. z ∈ Ω, all |x| ≤ ρ.

From (81) and the nonlinear regularity theory, we have

u0 ∈ C+ \ {0}.

Let ρ = ∥u0∥∞ and let ξ̂ρ > 0 be as postulated by (82). Then from (81) and (82), we have

(83) ∆pu0(z) + ∆u0(z) ≤ ξ̂ρu0(z)
p−1 for a.a. z ∈ Ω.

Let a(y) = |y|p−2y + y for all y ∈ R. We have

div a(∇u) = ∆pu+∆u for all u ∈ W 1,p
0 (Ω).

Note that a ∈ C1(RN ,RN) (recall that 2 < p). We have

∇a(y) = |y|p−2

[
id + (p− 1)

y ⊗ y

|y|2

]
+ id,

⇒ (∇a(y)ξ, ξ)RN ≥ |ξ|2 for all y, ξ ∈ RN .

So, using the tangency principle of Pucci-Serrin [24] (p. 35), we have

u0(z) > 0 for all z ∈ Ω.

From (83) and the boundary point theorem of Pucci-Serrin [24] (p. 120), we have

u0 ∈ intC+.
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Similarly working with φ−, we produce a negative solution

v0 ∈ −intC+.

□

Next using the theory of critical groups, we will produce a third nontrivial smooth

solution.

Proposition 4.4. If hypotheses H(f)2 hold, then Cm(φ,∞) ̸= 0 with m ∈ N as in

hypothesis H(f)2(ii).

Proof. Let σ̂(p) denote the spectrum of (−∆p,W
1,p
0 (Ω)). Pick λ ∈ (λ̂m(p), λ̂m+1(p)) \

σ̂(p) and consider the C1-functional ψ : W 1,p
0 (Ω) → R defined by

ψ(u) =
1

p
∥∇u∥pp −

λ

p
∥u∥pp for all u ∈ W 1,p

0 (Ω).

We introduce the homotopy h(t, u) defined by

h(t, u) = (1− t)φ(u) + tψ(u) for all t ∈ [0, 1], all u ∈ W 1,p
0 (Ω).

Claim: There exist η ∈ R and δ > 0 such that

h(t, u) ≤ η ⇒ (1 + ∥u∥)∥h′u(t, u)∥∗ ≥ δ for all t ∈ [0, 1].

As in the proof of Proposition 3.4, we argue by contradiction. So, suppose that the

Claim is not true. Since h(·, ·) maps bounded sets to bounded sets, we can find {tn}n≥1 ⊆
[0, 1] and {un}n≥1 ⊆ W 1,p

0 (Ω) such that

(84) tn → t, ∥un∥ → +∞, h(tn, un) → −∞ and (1 + ∥un∥)h′u(tn, un) → 0

as n→ +∞. From the last convergence in (84), we have∣∣⟨Ap(un), h⟩+ (1− tn)⟨A(un), h⟩ − (1− tn)

∫
Ω

f(z, un)hdz(85)

− tnλ

∫
Ω

|un|p−2unhdz
∣∣∣ ≤ εn∥h∥

1 + ∥un∥
for all h ∈ W 1,p

0 (Ω) with εn → 0+.

Choosing h = un ∈ W 1,p
0 (Ω) in (85), we obtain

(86) −∥∇un∥pp − (1− tn)∥∇un∥22 + (1− tn)

∫
Ω

f(z, un)undz + tnλ∥un∥pp ≤ εn

for all n ∈ N. From the third convergence in (84), we have

(87) ∥∇un∥pp +
p

2
(1− tn)∥∇un∥22 − (1− tn)

∫
Ω

pF (z, un)dz − tnλ∥un∥pp ≤ −1

for all n ≥ n0. We add (86), (87). Since 2 < p, we obtain

(88) (1− tn)

∫
Ω

[f(z, un)un − pF (z, un)]dz ≤ 0 for all n ≥ n1 ≥ n0.
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We claim that tn < 1 for all n ≥ n2 ≥ n1. Otherwise we can find a subsequence {tnk
}k≥1

of {tn}n≥1 such that tnk
= 1 for all k ∈ N. We have

h(tnk
, u) = h(1, u) = ψ(u) for all k ∈ N, all u ∈ W 1,p

0 (Ω).

Let yk =
unk

∥unk
∥
, k ∈ N. We have ∥yk∥ = 1 for all k ∈ N and so we may assume that

(89) yk
w−→ y in W 1,p

0 (Ω) and yk → y in Lp(Ω) as k → +∞.

From (86) and since tnk
= 1 for all k ∈ N, we have∣∣∣⟨Ap(yk), h⟩ − λ

∫
Ω

|yk|p−2ykhdz
∣∣∣ ≤ εnk

∥h∥
(1 + ∥unk

∥)∥unk
∥p−1

for all k ∈ N.(90)

In (90) we choose h = yk−y ∈ W 1,p
0 (Ω), pass to the limit as k → +∞ and use (89). Then

lim
k→+∞

⟨Ap(yk), yk − y⟩ = 0,

⇒ yk → y in W 1,p
0 (Ω) and so ∥y∥ = 1 (see Proposition 2.2).(91)

Passing to the limit as k → +∞ in (90) and using (91), we obtain

⟨Ap(y), h⟩ = λ

∫
Ω

|y|p−2yhdz for all h ∈ W 1,p
0 (Ω),

⇒ −∆py(z) = λ|y(z)|p−2y(z) for a.a. z ∈ Ω, y
∣∣∣
∂Ω

= 0,

⇒ y = 0 (since λ /∈ σ̂(p)), a contradiction to (91).

Therefore tn < 1 for all n ≥ n2 ≥ n1. Then from (88) we have

(92)

∫
Ω

[f(z, un)un − pF (z, un)]dz ≤ 0 for all n ≥ n2 ≥ n1.

We let yn =
un
∥un∥

, n ∈ N. Then ∥yn∥ = 1 for all n ∈ N and so we may assume that

(93) yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω).

From (85) we have∣∣∣⟨Ap(yn), h⟩+ 1− tn
∥un∥p−2

⟨A(yn), h⟩ − (1− tn)

∫
Ω

Nf (un)

∥un∥p−1
hdz

− tnλ

∫
Ω

|yn|p−2ynhdz
∣∣∣ ≤ εn∥h∥

(1 + ∥un∥)∥un∥p−1
for all n ∈ N.(94)

Hypotheses H(f)2(i), (ii) imply that

|f(z, x)| ≤ c12[1 + |x|p−1] for a.a. z ∈ Ω, all x ∈ R, some c12 > 0,

⇒
{
Nf (un)

∥un∥p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded.(95)
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So, by passing to a subsequence if necessary and using hypothesis H(f)2(ii), we have

(96)
Nf (un)

∥un∥p−1

w−→ λ̂m(p)|y|p−2y in Lp
′
(Ω) as n→ +∞.

In (94) we choose h = yn− y ∈ W 1,p
0 (Ω), pass to the limit as n→ +∞ and use (84), (93),

(95) and the fact that 2 < p. Then

lim
n→+∞

⟨Ap(yn), yn − y⟩ = 0,

⇒ yn → y in W 1,p
0 (Ω) and ∥y∥ = 1 (see Proposition 2.2).(97)

So, if in (94) we pass to the limit as n→ +∞ and use (97) and (96), then

⟨Ap(y), h⟩ =
∫
Ω

[(1− t)λ̂m(p) + tλ]|y|p−2yhdz for all h ∈ W 1,p
0 (Ω),

⇒ −∆py(z) = [(1− t)λ̂m(p) + tλ]|y(z)|p−2y(z) for a.a. z ∈ Ω, y
∣∣∣
∂Ω

= 0.(98)

We set λt = (1− t)λ̂m(p) + tλ. If λt /∈ σ̂(p), then from (98) il follows that

y = 0, a contradiction to (97).

Otherwise from (97) and if Ω0 = {z ∈ Ω : y(z) ̸= 0}, we have |Ω0|N > 0. Then

|un(z)| → +∞ for a.a. z ∈ Ω0,

⇒ f(z, un(z))un(z)− pF (z, un(z)) → +∞ for a.a. z ∈ Ω0

(see hypothesis H(f)2(iii)),

⇒
∫
Ω0

[f(z, un)un − pF (z, un)]dz → +∞ by Fatou’s lemma),

⇒
∫
Ω

[f(z, un)un − pF (z, un)]dz → +∞ (as before using H(f)2(iii)).(99)

Comparing (92) and (99), we have a contradiction. So the Claim is true. Using the Claim

and Theorem 5.1.21, p. 334, of Chang [3] (see also Proposition 3.2 of Liang-Su [13]), we

have

(100) Ck(φ,∞) = Ck(ψ,∞) for all k ∈ N0.

Note that Kψ = {0}. So, using Proposition 1.1 of Perera [23], we have

Cm(ψ,∞) = Cm(ψ, 0) ̸= 0,

⇒ Cm(φ,∞) ̸= 0 (see (100)).

□

Now we are ready for our second multiplicity theorem. As usual we assume that Kφ is

finite (otherwise, we already have an infinity of nontrivial solutions).
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Theorem 4.5. If hypothesis H(f)2 hold, then problem (1) admits at least three nontrivial

solutions u0 ∈ intC+, v0 ∈ −intC+, y0 ∈ C1
0(Ω).

Proof. From Proposition 4.3, we already have two nontrivial constant sign solutions

u0 ∈ intC+ and v0 ∈ −intC+.

From the proof of Proposition 4.3, we know that

u0 ∈ intC+ is a critical point of φ+ of mountain pass type,

v0 ∈ −intC+ is a critical point of φ− of mountain pass type.

It follows that

(101) C1(φ+, u0) ̸= 0 and C1(φ−, v0) ̸= 0

(see Motreanu-Motreanu-Papageorgiou [15], Corollary 6.81, p. 168). We introduce the

homotopy h+(t, u) defined by

h+(t, u) = (1− t)φ(u) + tφ+(u) for all t ∈ [0, 1], all u ∈ W 1,p
0 (Ω).

Suppose we could find {tn}n≥1 ⊆ [0, 1] and {yn}n≥1 ⊆ W 1,p
0 (Ω) such that

(102) tn → t ∈ [0, 1], yn → u0 ∈ W 1,p
0 (Ω), (h+)

′
u(tn, yn) = 0 for all n ∈ N.

From the equality in (102), we have

⟨Ap(yn), h⟩+ ⟨A(yn), h⟩ = (1− tn)

∫
Ω

f(z, yn)hdz + tn

∫
Ω

f(z, y+n )hdz

for all h ∈ W 1,p
0 (Ω), all n ∈ N,

⇒ −∆pyn(z)−∆yn(z) = (1− tn)f(z, yn(z)) + tnf(z, y
+
n (z))

for a.a. z ∈ Ω, yn

∣∣∣
∂Ω

= 0 for all n ∈ N.

Invoking Theorem 7.1, p. 286, of Ladyzhenskaya-Ural′tseva [11], we can find c13 > 0

such that

∥yn∥∞ ≤ c13 for all n ∈ N.

Then on account of Theorem 1 of Lieberman [12], we can find α ∈ (0, 1) and c14 > 0 such

that

yn ∈ C1,α
0 (Ω) and ∥yn∥C1,α

0 (Ω) ≤ c14 for all n ∈ N.

Exploiting the compact embedding of C1,α
0 (Ω) into C1

0(Ω) and using (102), we have

yn → u0 in C1
0(Ω).

Recall that u0 ∈ intC+. So, we can find n0 ∈ N such that

yn ∈ C+ \ {0} for all n ≥ n0,

⇒ {yn}n≥n0 ⊆ Kφ,
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which contradicts our hypothesis that Kφ is finite. Hence (102) can not occur and so we

can use the homotopy invariance property of critical groups (see Gasiński-Papageorgiou

[9], Theorem 5.125, p. 836) and have

Ck(φ, u0) = Ck(φ+, u0) for all k ∈ N0,

⇒ C1(φ, u0) ̸= 0 (see (101)).(103)

Similarly we show that

(104) C1(φ, v0) ̸= 0.

We know that φ ∈ C2(W 1,p
0 (Ω)). Therefore from (103), (104) and Papageorgiou-Rǎdulescu

[17], we have

(105) Ck(φ, u0) = Ck(φ, v0) = δk,1Z for all k ∈ N0.

From Proposition 4.2, we have

(106) Ck(φ, 0) = δk,0Z for all k ∈ N0.

Also, from Proposition 4.4 we know that Cm(φ,∞) ̸= 0. Hence we can find y0 ∈ Kφ such

that

(107) Cm(φ, y0) ̸= 0.

Since m ≥ 2, from (105), (106), (107) it follows that

y0 /∈ {u0, v0, 0}.

Therefore y0 is the third nontrivial solution of (1). The nonlinear regularity theory implies

that y0 ∈ C1
0(Ω). □
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