Given a quadratic extension L/K of fields and a regular alternating space (V, f) of finite dimension over L, we determine the isometry group of a K-subspace W of V which does not split into the orthogonal sum of two proper K-subspaces, W being neither an L-space nor a K-substructure.
Bartolone Claudio, & Vaccaro Maria Alessandra (2003). The structure of symplectic groups associated with a quadratic extension of fields. PUBLICATIONES MATHEMATICAE, 62(1-2), 7-42.
Data di pubblicazione: | 2003 | |
Titolo: | The structure of symplectic groups associated with a quadratic extension of fields | |
Autori: | ||
Citazione: | Bartolone Claudio, & Vaccaro Maria Alessandra (2003). The structure of symplectic groups associated with a quadratic extension of fields. PUBLICATIONES MATHEMATICAE, 62(1-2), 7-42. | |
Rivista: | ||
Abstract: | Given a quadratic extension L/K of fields and a regular alternating space (V, f) of finite dimension over L, we determine the isometry group of a K-subspace W of V which does not split into the orthogonal sum of two proper K-subspaces, W being neither an L-space nor a K-substructure. | |
Settore Scientifico Disciplinare: | Settore MAT/03 - Geometria | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Publ_Mat_Debrecen_2003.pdf | articolo principale | Versione Editoriale | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.