We consider a semilinear Robin problem with an indefinite linear part and a superlinear reaction term, which does not satisfy the usual in such cases AR condition. Using variational methods, together with truncation–perturbation techniques and Morse theory (critical groups), we establish the existence of three nontrivial solutions. Our result extends in different ways the multiplicity theorem of Wang.
Papageorgiou, N.S., Vetro, C., Vetro, F. (2020). Superlinear Robin Problems with Indefinite Linear Part. BULLETIN OF THE MALAYSIAN MATHEMATICAL SOCIETY, 43(1), 537-562 [10.1007/s40840-018-0701-2].
Superlinear Robin Problems with Indefinite Linear Part
Vetro, Calogero
;
2020-01-01
Abstract
We consider a semilinear Robin problem with an indefinite linear part and a superlinear reaction term, which does not satisfy the usual in such cases AR condition. Using variational methods, together with truncation–perturbation techniques and Morse theory (critical groups), we establish the existence of three nontrivial solutions. Our result extends in different ways the multiplicity theorem of Wang.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BMMSS_PapageorgiouVetroVetro2018.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
581.5 kB
Formato
Adobe PDF
|
581.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10447_411882-PVV-BMMSS-post-print.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
337.88 kB
Formato
Adobe PDF
|
337.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.