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Abstract. We consider a semilinear Robin problem with an indefinite linear part
and a superlinear reaction term, which does not satisfy the usual in such cases AR-
condition. Using variational methods, together with truncation-perturbation tech-
niques and Morse theory (critical groups), we establish the existence of three nontrivial
solutions. Our result extends in different ways the multiplicity theorem of Wang.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study
the following semilinear Robin problem

(1)

 −∆u(z) + ξ(z)u(z) = f(z, u(z)) in Ω,

∂u

∂n
+ β(z)u = 0 on ∂Ω.

In this problem ξ ∈ Ls(Ω), s > N , is an indefinite potential function. So, the linear
part of problem (1) is indefinite. The reaction term f(z, x) is a Carathéodory function
(that is, for all x ∈ R, z → f(z, x) is measurable and, for a.a. z ∈ Ω, x → f(z, x)
is continuous), which exhibits superlinear growth near ±∞ but without satisfying the
usual in such cases Ambrosetti-Rabinowitz condition (the AR-condition for short). In

the boundary condition,
∂u

∂n
denotes the usual normal derivative on ∂Ω defined by

extension of the map

u→ ∂u

∂n
= (∇u, n)RN for all u ∈ C1(Ω),

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient β belongs
in W 1,∞(∂Ω) and β(z) ≥ 0 for all z ∈ ∂Ω. If β ≡ 0, then we recover the Neumann
problem.

Our aim in this paper, is to extend the well-known multiplicity result (three solutions
theorem) of Wang [21]. In Wang [21] the problem is Dirichlet, there is no potential
term (that is, ξ ≡ 0 and so the linear part of the equation in [21] is coercive) and the
reaction term is autonomous (that is, f(z, x) = f(x)), f ∈ C1(R,R), f(0) = f ′(0) = 0
and satisfies the AR-condition. Here, we weaken significantly all these requirements.
We mention, that the lack of smoothness for the function x → f(z, x) (in our case
this function is only continuous and not necessarily C1), makes the use of Morse theory
problematic. It is well-known that the most powerful tools of Morse theory, are available
if the energy (Euler) functional of the problem is C2, which is not possible if f(z, ·) is
only continuous.

Key words and phrases. Indefinite potential function, superlinear reaction term, regularity theory,
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We mention that superlinear problems with coercive left hand side, were studied
by Miyagaki-Souto [13] (parametric semilinear Dirichlet problems) and by Aizicovici-
Papageorgiou-Staicu [2] (Neumann problems), [3] (Dirichlet problems), Fang-Liu [8],
Li-Yang [11], Liu [12], Sun [19] (all four works prove only existence theorems) for equa-
tions driven by the p-Laplacian. Finally we mention that multiplicity theorems for
different classes of semilinear problems with an indefinite potential term, were proved
by Papageorgiou-Papalini [15] (Dirichlet problems). Papageorgiou-Smyrlis [18] (Neu-
mann problems) and Papageorgiou-Rǎdulescu [17] (Robin problems).

Our approach uses variational methods based on the critical point theory and trun-
cation-perturbation techniques coupled with Morse theory (critical groups).

2. Mathematical Background

Let X be a Banach space and let X∗ denote its topological dual. By 〈·, ·〉 we denote
the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we say that ϕ satisfies
the “Cerami condition” (the “C-condition” for short), if the following property holds:

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and
(1 + ‖un‖)ϕ′(un)→ 0 in X∗ as n→ +∞, admits a strongly convergent subsequence.”

This is a compactness-type condition on the functional ϕ and it leads to a deformation
theorem from which one can derive the minimax theory for the critical values of ϕ.
Prominent in that theory is the celebrated “mountain pass theorem” of Ambrosetti-
Rabinowitz [4]. Here we state this result in a slightly more general form (see Gasiński-
Papageorgiou [9]).

Theorem 1. If ϕ ∈ C1(X,R) satisfies the C-condition, u0, u1 ∈ X, ‖u1− u0‖ > ρ > 0,
max{ϕ(u0), ϕ(u1)} < inf[ϕ(u) : ‖u − u0‖ = ρ] = mρ and c = infγ∈Γ max0≤t≤1 ϕ(γ(t))
with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}, then c ≥ mρ and c is a critical value
of ϕ.

The spaces which we will use in the study of problem (1) are the Sobolev space H1(Ω),
the Banach space C1(Ω) and the “boundary” spaces Lp(∂Ω) (1 ≤ p ≤ ∞).

The space H1(Ω) is a Hilbert space with inner product

(u, v) =

∫
Ω

uvdz +

∫
Ω

(∇u,∇v)RNdz for all u, v ∈ H1(Ω)

and corresponding norm

‖u‖ =
[
‖u‖2

2 + ‖∇u‖2
2

]1/2
for all u ∈ H1(Ω).

The Banach space C1(Ω) is an ordered Banach space with positive cone given by

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior which contains the set

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Then
using σ(·) we can define in the usual way the boundary Lebesgue spaces Lp(∂Ω) (1 ≤
p ≤ ∞).
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From the theory of Sobolev spaces, we know that there exists a unique continuous
linear map γ0 : H1(Ω)→ L2(∂Ω), known as the trace map such that

γ0(u) = u
∣∣
∂Ω

for all u ∈ H1(Ω) ∩ C(Ω).

So, we understand the trace map as an expression of the “boundary values” of a Sobolev

function. We know that the linear map γ0 is compact into Lp(Ω) with p ∈
[
1, 2(N−1)

N−2

)
if N ≥ 3 and into Lp(Ω) for all p ≥ 1 if N = 1, 2. In what follows, for the sake of
notational simplicity, we drop the use of the trace map γ0. All restrictions of Sobolev
functions on ∂Ω, are understood in the sense of traces.

Also, we will need the principal eigenvalue in the spectrum of u→ −∆u+ ξ(z)u with
Robin boundary condition. So, we consider the following linear eigenvalue problem:

(2)

 −∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω,

∂u

∂n
+ β(z)u = 0 on ∂Ω.

Suppose that

• ξ ∈ LN/2(Ω) if N ≥ 3, ξ ∈ Lp(Ω) with p > 1 if N = 2 and ξ ∈ L1(Ω) if N = 1;
• β ∈ W 1,∞(∂Ω), β(z) ≥ 0 for all z ∈ ∂Ω.

Consider the C1-functional η : H1(Ω)→ R defined by

η(u) = ‖∇u‖2
2 +

∫
Ω

ξ(z)u2dz +

∫
∂Ω

β(z)u2dσ for all u ∈ H1(Ω).

From D’Agùı-Marano-Papageorgiou [6], we know that there exists µ > 0 such that

(3) η(u) + µ‖u‖2
2 ≥ c0‖u‖2 for all u ∈ H1(Ω), some c0 > 0.

Using (3) and the spectral theorem for compact self-adjoint operators on a Hilbert
space, we can have a complete description of the spectrum of (2). So, we obtain a strictly

increasing sequence {λ̂k}k≥1 of distinct eigenvalues such that λ̂k → +∞ as k → +∞.

If by E(λ̂k), k ∈ N, we denote the eigenspace corresponding to the eigenvalue λ̂k, then
we have the following orthogonal direct sum decomposition

H1(Ω) =
⊕
k≥1

E(λ̂k).

For the first eigenvalue λ̂1, we have the following properties

λ̂1 = inf

[
η(u)

‖u‖2
2

: u ∈ H1(Ω), u 6= 0

]
;(4)

λ̂1 is simple (that is, dim E(λ̂1) = 1).(5)

The infimum in (4) is realized on E(λ̂1). This in conjunction with (5) imply that the

elements of E(λ̂1) have fixed sign. Let û1 denote the L2-normalized (that is, ‖û1‖2 = 1)

positive eigenfunction corresponding to λ̂1, If ξ ∈ Ls(Ω) s > N , then using the regular-
ity theory of Wang [20], we have û1 ∈ C+ \ {0}, In addition Harnack’s inequality (see,
for example, Motreanu-Motreanu-Papageorgiou [14] (p. 212)) implies that û1(z) > 0
for all z ∈ Ω. Finally if ξ+ ∈ L∞(Ω), then Hopf’s theorem (see, for example, Gasiński-
Papageorgiou [9] (p. 738)) implies that û1 ∈ D+. Finally, we mention that the eigen-

functions corresponding to an eigenvalue λ̂k, k ∈ N, k 6= 1, are nodal (that is, sign
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changing) and the eigenspace E(λ̂k) has the “Unique Continuation Property”, that is,

if u ∈ E(λ̂k) and u vanishes on a set of positive measure, then u = 0.
For details, see D’Agùı-Marano-Papageorgiou [6] and Papageorgiou-Smyrlis [18].
Let X be a Banach space, ϕ ∈ C1(X,R) and c ∈ R. We introduce the following sets

ϕc = {u ∈ X : ϕ(u) ≤ c},
Kϕ = {u ∈ X : ϕ′(u) = 0},
Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c}.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X. For every k ∈ N0, by
Hk(Y1, Y2) we denote the kth-relative singular homology group with integer coefficients
for the pair (Y1, Y2). Recall that if k ∈ −N, then Hk(Y1, Y2) = 0. Suppose that u0 ∈ Kc

ϕ

is isolated. Then the critical groups of ϕ at u0 are defined by

Ck(ϕ, u0) = Hk(ϕ
c ∩ U,ϕc ∩ U \ {u0}) for all k ∈ N0,

with U being a neighborhood of u0 such that Kϕ∩ϕc∩U = {u0}. The excision property
of singular homology theory implies that this definition is independent of the choice of
the neighborhood U .

Suppose that ϕ ∈ C1(X,R) satisfies the C-condition and −∞ < inf ϕ(Kϕ). Let
c < inf ϕ(Kϕ). Then the critical groups of ϕ at infinity, are defined by

Ck(ϕ,∞) = Hk(X,ϕ
c) for all k ∈ N0.

From the second deformation theorem (see Gasiński-Papageorgiou [9], (p. 628)), we
know that if c, c′ < inf ϕ(Kϕ), then the sets ϕc and ϕc

′
are homotopy equivalent and so

Hk(X,ϕ
c) = Hk(X,ϕ

c′) for all k ∈ N0

(see Motreanu-Motreanu-Papageorgiou [14] (p. 143)). So, it follows that the above
definition of critical groups at infinity is independent of the choice of the level c <
inf ϕ(Kϕ).

Suppose that the critical set Kϕ is finite. We introduce the following polynomials in
t ∈ R:

M(t, u) =
∑
k∈N0

rank Ck(ϕ, u)tk for all t ∈ R, all u ∈ Kϕ,

P (t,∞) =
∑
k∈N0

rank Ck(ϕ,∞)tk for all t ∈ R.

The “Morse relation” says that∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) for all t ∈ R,

with Q(t) =
∑

k∈N0
βkt

k being a formal series in t ∈ R with nonnegative integer coeffi-
cients βk.

In what follows A ∈ L(H1(Ω), H1(Ω)∗) is the continuous linear operator defined by

〈A(u), v〉 =

∫
Ω

(∇u,∇v)RNdz for all u, v ∈ H1(Ω).
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Also, we say that a Banach space X has the “Kadec-Klee property”, if the following
implication holds:

un
w−→ u in X and ‖un‖ → ‖u‖ ⇒ un → u in X.

We know that locally uniformly convex Banach spaces (in particular Hilbert spaces),
have the Kadec-Klee property (see Gasiński-Papageorgiou [9] (p. 901)).

Finally we introduce some basic notation which will be used in the sequel. So, if
x ∈ R, then we set x± = max{±x, 0}. For u ∈ W 1,p(Ω) we define

u±(·) = u(·)±.
We know that

u = u+ − u−, |u| = u+ + u−, u± ∈ W 1,p(Ω).

By | · |N we denote the Lebesgue measure on RN and by 2∗ the critical Sobolev
exponent defined by

2∗ =


2N

N − 2
if N ≥ 3,

+∞ if N = 1, 2.

3. Three Solutions Theorem

The hypotheses on the data of problem (1) are the following:

H(ξ): ξ ∈ Ls(Ω) with s > N and ξ+ ∈ L∞(Ω).
H(β): β ∈ W 1,∞(∂Ω) and β(z) ≥ 0 for all z ∈ ∂Ω.

Remark 1. If β ≡ 0, then we have the Neumann problem.

H: f : Ω× R→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω and

(i) |f(z, x)| ≤ a(z)(1 + |x|r−1) for a.a. z ∈ Ω, all x ∈ R, with 2 < r < 2∗;

(ii) if F (z, x) =
∫ x

0
f(z, s)ds, then lim

x→±∞
F (z,x)
x2

= +∞ uniformly for a.a. z ∈ Ω;

(iii) if e(z, x) = f(z, x)x− 2F (z, x), then there exists d ∈ L1(Ω) such that

e(z, x) ≤ e(z, y) + d(z) for a.a. z ∈ Ω, all 0 ≤ x ≤ y or y ≤ x ≤ 0;

(iv) there exist ϑ0 > 0 and a function ϑ ∈ L∞(Ω) such that

ϑ(z) ≤ λ̂1 for a.a. z ∈ Ω, ϑ 6≡ λ̂1,

− ϑ0 ≤ lim inf
x→0

f(z, x)

x
≤ lim sup

x→0

f(z, x)

x
≤ ϑ(z) uniformly for a.a. z ∈ Ω.

Remark 2. Evidently hypotheses H(ii), (iii) imply that

lim
x→±∞

f(z, x)

x
= +∞ uniformly for a.a. z ∈ Ω.

So the reaction term of problem (1) is superlinear in the x-variable. However, we
point out that the superlinearity of f(z, ·) is not formulated using the common for such
problems AR-condition. We recall that the AR-condition says that there exist q > 2
and M > 0 such that

0 < qF (z, x) ≤ f(z, x)x for a.a. z ∈ Ω, all |x| ≥M,(6)

0 < essinfΩF (·,±M).(7)
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Integrating (6) and using (7), we obtain the following weaker condition

(8) c1|x|q ≤ F (z, x) for a.a. z ∈ Ω, all |x| ≥M , some c1 > 0.

From (8) and (6) we see that the AR-condition implies that f(z, ·) has at least (q−1)-
polynomial growth near ±∞. This excludes from consideration superlinear nonlinear-
ities with “slower” growth near ±∞ (see the examples below). Here, instead of the
AR-condition (see (6), (7)), we employ a quasimonotonicity condition on the function
e(z, ·) (see hypothesis H(iii)). This condition is a little more general than the one used
by Li-Yang [11]. If there exists M > 0 such that

x→ f(z, x)

x
is nondecreasing on [M,+∞),

x→ f(z, x)

x
is nonincreasing on (−∞,−M ],

then hypothesis H(iii) is satisfied. At zero we have nonuniform nonresonance with

respect to the principal eigenvalue λ̂1 (see hypothesis H(iii)).

Example 1. The following functions satisfy hypotheses H. For the sake of simplicity
we drop the z-dependence.

f1(x) =

{
cx if |x| ≤ 1,

|x|r−2x+ c− 1 if 1 < |x|,
with c < λ̂1, 2 < r < 2∗,

f2(x) =

{
c(x− |x|τ−2x) if |x| ≤ 1,

|x| ln |x| if 1 < |x|,
with c < λ̂1, 2 < τ.

Note that f2 does not satisfy the AR-condition.
We start by producing two nontrivial constant sign smooth solutions.

Proposition 1. If hypotheses H(ξ), H(β), H hold, then problem (1) has at least two
nontrivial constant sign solutions u0 ∈ D+ and v0 ∈ −D+.

Proof. Let µ > 0 be as in (3) and consider the Carathéodory function g+ : Ω× R→ R
defined by

(9) g+(z, x) =

{
0 if x ≤ 0,

f(z, x) + µx if 0 < x.

We set G+(z, x) =
∫ x

0
g+(z, s)ds and consider the C1-functional ψ+ : H1(Ω) → R

defined by

ψ+(u) =
1

2
η(u) +

µ

2
‖u‖2

2 −
∫

Ω

G+(z, u)dz for all u ∈ H1(Ω).

Claim 1: The functional ψ+ satisfies the C-condition.
Let {un}n≥1 ⊆ H1(Ω) be a sequence such that

|ψ+(un)| ≤M1 for some M1 > 0, all n ∈ N,(10)

(1 + ‖un‖)ψ′+(un)→ 0 in H1(Ω)∗.(11)
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From (11) we have

∣∣∣∣〈A(un), h〉+

∫
Ω

(ξ(z) + µ)unhdz +

∫
∂Ω

β(z)unhdσ −
∫

Ω

g+(z, un)hdz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

(12)

for all h ∈ H1(Ω), with εn → 0+.

In (12) we choose h = −u−n ∈ H1(Ω). Then

η(u−n ) + µ‖u−n ‖2
2 ≤ εn for all n ∈ N (see (9)),

⇒ c0‖u−n ‖2 ≤ εn for all n ∈ N (see (3)),

⇒ u−n → 0 in H1(Ω).(13)

From (10) and (13), we have

‖∇u+
n ‖2

2 +

∫
Ω

ξ(z)(u+
n )2dz +

∫
∂Ω

β(z)(u+
n )2dσ −

∫
Ω

2F (z, u+
n )dz ≤M2(14)

for some M2 > 0, all n ∈ N (see (9)).

On the other hand, if in (12) we choose h = u+
n ∈ H1(Ω), then

(15)

−‖∇u+
n ‖2

2 −
∫

Ω

ξ(z)(u+
n )2dz −

∫
∂Ω

β(z)(u+
n )2dσ +

∫
Ω

f(z, u+
n )u+

n dz ≤ εn for all n ∈ N.

We add (14) and (15) and obtain

(16)

∫
Ω

e(z, u+
n )dz ≤M3 for some M3 > 0, all n ∈ N.

We show that {u+
n }n≥1 ⊆ H1(Ω) is bounded. Arguing by contradiction, suppose that

by passing to a subsequence if necessary, we have

(17) ‖u+
n ‖ → +∞.

Let yn =
u+
n

‖u+
n ‖

, n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N and so we may assume

that

yn
w−→ y in H1(Ω) and yn → y in Lτ (Ω) and in L2(∂Ω), y ≥ 0,(18)

with τ = max

{
2s

s− 1
, r

}
(note that τ < 2∗).

First suppose that y 6= 0 and let S = {z ∈ Ω : y(z) > 0}. Then |S|N > 0 and we have

u+
n (z)→ +∞ for a.a. z ∈ S.

Using hypothesis H(ii), we have

(19)
F (z, u+

n )

‖u+
n ‖2

=
F (z, u+

n )

(u+
n )2

y2
n → +∞ for a.a. z ∈ S.

Using (19) and Fatou’s lemma (note that hypothesis H(ii) permits its use), we have

(20)

∫
S

F (z, u+
n )

‖u+
n ‖2

dz → +∞ as n→ +∞.

Hypothesis H(ii) implies that we can find M4 > 0 such that

(21) F (z, x) ≥ 0 for a.a. z ∈ Ω, all |x| ≥M4.
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Also, from (17) we see that without any loss of generality we may assume that

(22) ‖u+
n ‖ ≥ 1 for all n ∈ N.

We have

(23)

∫
Ω

F (z, u+
n )

‖u+
n ‖2

dz =

∫
S

F (z, u+
n )

‖u+
n ‖2

dz +

∫
Ω\S

F (z, u+
n )

‖u+
n ‖2

dz for all n ∈ N.

We estimate the second integral in the right hand side of (23). Then∫
Ω\S

F (z, u+
n )

‖u+
n ‖2

dz =

∫
(Ω\S)∩{u+n≥M4}

F (z, u+
n )

‖u+
n ‖2

dz +

∫
(Ω\S)∩{u+n<M4}

F (z, u+
n )

‖u+
n ‖2

dz

≥ −M5 for some M5 > 0, all n ∈ N(24)

(see (21), (22) and hypothesis H(i)).

Returning to (23) and using (24), we obtain∫
Ω

F (z, u+
n )

‖u+
n ‖2

dz ≥
∫
S

F (z, u+
n )

‖u+
n ‖2

dz −M5 for all n ∈ N,

⇒ lim
n→+∞

∫
Ω

F (z, u+
n )

‖u+
n ‖2

dz = +∞ (see (20)).(25)

From (10) and (13), we have∫
Ω

2F (z, u+
n )dz ≤M6 + η(u+

n ) for some M6 > 0, all n ∈ N

≤M6 + ‖∇u+
n ‖2

2 + ‖ξ+‖∞‖u+
n ‖2

2 +

∫
∂Ω

β(z)(u+
n )2dσ

for all n ∈ N (see hypothesis H(ξ)),

⇒
∫

Ω

2F (z, u+
n )

‖u+
n ‖2

dz ≤ M6

‖u+
n ‖2

+ ‖∇yn‖2
2 + ‖ξ+‖∞‖yn‖2

2 +

∫
∂Ω

β(z)y2
ndσ

≤ c2(1 + ‖yn‖2) = 2c2(26)

for some c2 > 0, all n ∈ N (recall that ‖yn‖1 = 1 for all n ∈ N).

Comparing (25) and (26) we have a contradiction.
Next suppose that y = 0. Let k > 0 and set vn = (2k)1/2yn ∈ H1(Ω), n ∈ N. Then

vn → 0 in Lr(Ω) (see (18) and recall that y = 0),

⇒
∫

Ω

F (z, vn)dz → 0 (see hypothesis H(i)).(27)

From (17) we see that we can find n0 ∈ N such that

(28) (2k)1/2 1

‖u+
n ‖
≤ 1 for all n ≥ n0.

Let tn ∈ [0, 1] be such that

(29) ψ+(tnu
+
n ) = max[ψ+(tu+

n ) : 0 ≤ t ≤ 1] for all n ∈ N.

From (28) and (29) it follows that

ψ+(tnu
+
n ) ≥ ψ+(vn)
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= k[η(yn) + µ‖yn‖2
2]−

∫
Ω

F (z, vn)dz − µ

2
‖vn‖2

2 (see (9))

≥ kc0 −
∫

Ω

F (z, vn)dz − µ

2
‖vn‖2

2 for all n ≥ n0

(see (3) and recall that ‖yn‖ = 1 for all n ∈ N).

Since vn → 0 in L2(Ω) and using also (27), we see that we can find n1 ≥ n0 such that

ψ+(tnu
+
n ) ≥ kc0

2
for all n ≥ n1.

But recall that k > 0 is arbitrary. So, we infer that

(30) ψ+(tnu
+
n )→ +∞ as n→ +∞.

We know that

ψ+(0) = 0 and ψ+(u+
n ) ≤M7 for some M7 > 0, all n ∈ N (see (10) and (13)).

Therefore (30) implies that we can find n2 ∈ N such that

(31) tn ∈ (0, 1) for all n ≥ n2.

From (29) and (31), we have

d

dt
ψ+(tu+

n )
∣∣
t=tn

= 0 for all n ≥ n2,

⇒ 〈ψ′+(tnu
+
n ), u+

n 〉 = 0 for all n ≥ n2 (by the chain rule),

⇒ 〈ψ′+(tnu
+
n ), tnu

+
n 〉 = 0 for all n ≥ n2,

⇒ η(tnu
+
n ) =

∫
Ω

f(z, tnu
+
n )(tnu

+
n )dz for all n ≥ n2 (see (9)).(32)

Hypothesis H(iii) and (31) imply that∫
Ω

e(z, tnu
+
n )dz ≤

∫
Ω

e(z, u+
n )dz + ‖d‖1 for all n ≥ n2,

⇒
∫

Ω

e(z, tnu
+
n )dz ≤M8 for some M8 > 0, all n ≥ n2 (see (16)),

⇒
∫

Ω

f(z, tnu
+
n )(tnu

+
n )dz ≤M8 +

∫
Ω

2F (z, tnu
+
n )dz for all n ≥ n2.

We use this inequality in (32) and obtain that

(33) 2ψ+(tnu
+
n ) ≤M8 for all n ≥ n2 (see (9)).

Comparing (30) and (33) we have a contradiction.
So, we have proved that

{u+
n }n≥1 ⊆ H1(Ω) is bounded,

⇒ {un}n≥1 ⊆ H1(Ω) is bounded (see (13)).

Hence we may assume that

(34) un
w−→ u in H1(Ω) and un → u in Lτ (Ω) and in L2(∂Ω).
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In (12) we choose h = un − u ∈ H1(Ω), pass to the limit as n → +∞ and use (34).
Then

lim
n→+∞

〈A(un), un − u〉 = 0,

⇒ ‖∇un‖2 → ‖∇u‖2,

⇒ un → u in H1(Ω) by the Kadec-Klee property (see (34)).

This proves Claim 1.
Claim 2: u = 0 is a local minimizer of the functional ψ+.

Hypotheses H(i), (iv) imply that given ε > 0, we can find c3 = c3(ε) > 0 such that

(35) F (z, x) ≤ 1

2
(ϑ(z) + ε)x2 + c3|x|r for a.a. z ∈ Ω, all x ∈ R.

Then for every u ∈ H1(Ω) we have

ψ+(u) =
1

2
η(u−) +

µ

2
‖u−‖2

2 +
1

2
η(u+) +

µ

2
‖u+‖2

2 −
∫

Ω

G+(z, u+)dz

≥ c0

2
‖u−‖2 +

1

2
η(u+)− 1

2

∫
Ω

ϑ(z)(u+)2dz − ε

2
‖u+‖2 − c4‖u‖r

for some c4 > 0 (see (3), (9) and (35))

≥ c0

2
‖u−‖2 +

c5 − ε
2
‖u+‖2 − c4‖u‖r

for some c5 > 0 (see D’Agùı-Marano-Papageorgiou [6], Lemma 2.2).

Choosing ε ∈ (0, c5) we infer that

(36) ψ+(u) ≥ c6‖u‖2 − c4‖u‖r for some c6 > 0, all u ∈ H1(Ω).

Since r > 2, from (36) it follows that

u = 0 is a local minimizer of ψ+.

This proves Claim 2.
Claim 3: Kψ+ \ {0} ⊆ D+.

Let u ∈ Kψ+ , u 6= 0. Then we have

(37) 〈A(u), h〉+
∫

Ω

(ξ(z)+µ)uhdz+

∫
∂Ω

β(z)uhdσ =

∫
Ω

g+(z, u)hdz for all h ∈ H1(Ω).

In (37) we choose h = −u− ∈ H1(Ω). Then

η(u−) + µ‖u−‖2
2 = 0 (see (9))

⇒ c0‖u−‖2 ≤ 0 (see (3)),

⇒ u ≥ 0, u 6= 0.

Then using (9), we see that (37) becomes

〈A(u), h〉+

∫
Ω

ξ(z)uhdz +

∫
∂Ω

β(z)uhdσ =

∫
Ω

f(z, u)hdz for all h ∈ H1(Ω),

⇒ −∆u(z) + ξ(z)u(z) = f(z, u(z)) for a.a. z ∈ Ω,
(38)

∂u

∂n
+ β(z)u = 0 on ∂Ω
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(see Papageorgiou-Rǎdulescu [16]).

Hypotheses H(i), (iv) imply that

(39) |f(z, x)| ≤ c7(|x|+ |x|r−1) for a.a. z ∈ Ω, all x ∈ R, some c7 > 0.

Then from (38) we have

(40) −∆u(z) =

[
f(z, u(z))

u(z)
− ξ(z)

]
u(z) for a.a. z ∈ Ω.

Let a0(z) =
f(z, u(z))

u(z)
− ξ(z). We have

|a0(z)| ≤ |f(z, u(z))|
|u(z)|

+ |ξ(z)|

≤ c7(1 + |u(z)|r−2) + |ξ(z)| for a.a. z ∈ Ω (see (39)).

Since u ∈ H1(Ω), using the Sobolev embedding theorem, we have

|u(·)|r−2 ∈ L
2∗
r−2 (Ω).

By hypothesis r < 2∗ and so we have

N

2
<

2∗

r − 2
.

Therefore

a0 ∈ Lλ(Ω) with λ >
N

2
(see hypothesis H(ξ)).

Then from (40) and Lemma 5.1 of Wang [20] we have u ∈ L∞(Ω).
So, using hypotheses H(i) and H(ξ), we see that

z → f(z, u(z))− ξ(z)u(z) belongs in Ls(Ω), s > N .

Invoking Lemma 5.2 of Wang [20] (the Calderon-Zygmund estimates) we infer that
u ∈ C+ \ {0}.

Hypotheses H(i), (iv) imply that if ρ = ‖u‖∞, then we can find ξ̃ρ > 0 such that

(41) f(z, x)x+ ξ̃ρx
2 ≥ 0 for a.a. z ∈ Ω, all |x| ≤ ρ.

From (38) and (41) it follows that

∆u(z) ≤ (‖ξ+‖∞ + ξ̃ρ)u(z) for a.a. z ∈ Ω (see hypothesis H(ξ)),

⇒ u ∈ D+ (by the strong maximum principle).

This proves Claim 3.
On account of Claim 3, we may assume that Kψ+ is finite (otherwise we already have

an infinity of distinct positive smooth solutions of problem (1) (see (9)) and so we are
done). Claim 2 implies that we can find ρ ∈ (0, 1) small such that

(42) 0 = ψ+(0) < inf[ψ+(u) : ‖u‖ = ρ] = m+
ρ

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29).
Also, hypothesis H(ii) implies that for every u ∈ D+, we have

(43) ψ+(tu)→ −∞ as t→ +∞.
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From (42), (43) and Claim 1, we see that we can apply Theorem 1 (the mountain
pass theorem) and find u0 ∈ H1(Ω) such that

u0 ∈ Kψ+ and m+
ρ ≤ ψ+(u0).

It follows that u0 ∈ D+ is a positive solution of problem (1) (see Claim 3, (42) and
(9)).

For the negative solution we argue in a similar fashion. So, we introduce the Carathéodory
function g− : Ω× R→ R defined by

g−(z, x) =

{
f(z, x) + µx if x < 0,

0 if 0 ≤ x.

We set G−(z, x) =
∫ x

0
g−(z, s)ds and consider the C1-functional ψ− : H1(Ω) → R

defined by

ψ−(u) =
1

2
η(u) +

µ

2
‖u‖2

2 −
∫

Ω

G−(z, u)dz for all u ∈ H1(Ω).

Using ψ− and reasoning as we did for ψ+, we produce a negative solution v0 ∈
−D+. �

To produce a third nontrivial smooth solution, we will use tools from Morse theory
(critical groups). The fact that ψ+ are not C2-functionals complicates things.

Proposition 2. If hypotheses H(ξ), H(β), H hold, then Ck(ψ±,∞) = 0 for all k ∈ N0.

Proof. We will do the proof for the functional ψ+, the proof for ψ− being similar.
Let ∂B+

1 = {u ∈ H1(Ω) : ‖u‖ = 1, u+ 6= 0}. We consider the deformation h+ :
[0, 1]× ∂B+

1 → ∂B+
1 defined by

h+(t, u) =
(1− t)u+ tû1

‖(1− t)u+ tû1‖
for all (t, u) ∈ [0, 1]× ∂B+

1 .

We have

h+(0, ·) = id
∣∣
∂B+

1
and h+(1, ·) =

û1

‖û1‖
∈ ∂B+

1 (recall that û1 ∈ D+).

So, it follows that

(44) ∂B+
1 is contractible in itself.

Hypotheses H(i), (ii) imply that given any k > 0, we can find c8 = c8(k) > 0 such
that

(45) F (z, x) ≥ k

2
x2 − c8 for a.a. z ∈ Ω, all x ∈ R.

Then for u ∈ ∂B+
1 and t > 0, we have

ψ+(tu) =
t2

2
η(u) +

µ

2
t2‖u‖2

2 −
∫

Ω

G+(z, tu)dz

≤ t2

2
η(u) +

µ

2
t2‖u‖2

2 −
k

2
t2‖u+‖2

2 −
µ

2
t2‖u+‖2

2 + c8|Ω|N (see (9) and (45))

≤ t2

2
[η(u−) + µ‖u−‖2

2] +
t2

2
[η(u+)− k‖u+‖2

2 + c8|Ω|N
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≤ t2

2
c9 +

t2

2
[c10 − k‖u+‖2

2] + c8|Ω|N for some c9 > 0, c10 > 0

(see hypotheses H(ξ), H(β) and recall that ‖u‖ = 1)

=
t2

2
[c11 − k‖u+‖2

2] + c8|Ω|N with c11 = c9 + c10 > 0.

Recall that k > 0 is arbitrary. We choose k >
c11

‖u+‖2
2

. It follows that

(46) ψ+(tu)→ −∞ as t→ +∞ for all u ∈ ∂B+
1 .

For u ∈ ∂B+
1 and t > 0, we have

d

dt
ψ+(tu) = 〈ψ′+(tu), u〉 (by the chain rule)

=
1

t
〈ψ′+(tu), tu〉

=
1

t

[
〈A(tu), tu〉+

∫
Ω

(ξ(z) + µ)(tu)2dz +

∫
∂Ω

β(z)(tu)2dσ −
∫

Ω

g+(z, tu)(tu)dz

]
=

1

t

[
η(tu) + µ‖tu‖2

2 −
∫

Ω

g+(z, tu)(tu)dz

]
≤ 1

t

[
η(tu) + µ‖tu‖2

2 −
∫

Ω

(2F (z, tu+) + µ(tu+))dz + ‖d‖1

]
(from hypothesis H(iii) we have 0 ≤ e(z, x) + d(z) for a.a. z ∈ Ω, all x ∈ R)

≤ 1

t
[2ψ+(tu) + ‖d‖1].(47)

From (46) and (47) we see that

(48) ψ+(tu) < −‖d‖1

2
and

d

dt
ψ+(tu) < 0 for all t > 0 big.

We choose

(49) m < min

{
−‖d‖1

2
, inf
B1

ψ+

}
.

From (48) and the implicit function theorem, we know that there exists ζ ∈ C(∂B+
1 )

with ζ ≥ 1 (see (49)) such that

(50) ψ+(tu)


> m if t ∈ [0, ζ(u)),

= m if t = ζ(u),

< m if ζ(u) < t.

From (49) and (50) it follows that

(51) ψm+ = {tu : u ∈ ∂B+
1 , t ≥ ζ(u)}.

We set

E+ = {tu : u ∈ ∂B+
1 , t ≥ 1}.

Evidently we have

ψm+ ⊆ E+(see (51)).
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We consider the deformation h̃+ : [0, 1]× E+ → E+ defined by

(52) h̃+(s, tu) =

{
(1− s)tu+ sζ(u)u if t ∈ [1, ζ(u)),

tu if ζ(u) ≤ t,

(recall that ζ ≥ 1). We have

h̃+(s, ·)
∣∣
ψm+

= id
∣∣
ψm+

for all s ∈ [0, 1] (see (51), (52)),

h̃+(1, E+) ⊆ ψm+ (see (51)), (52)).

This means that

ψm+ is a strong deformation retract of E+

⇒ Hk(H
1(Ω), ψm+ ) = Hk(H

1(Ω), E+) for all k ∈ N0(53)

(see Motreanu-Motreanu-Papageorgiou [14] (p. 143)).

Also, we consider the deformation h+ : [0, 1]× E+ → E+ defined by

h+(s, tu) = (1− s)tu+ s
tu

‖tu‖
for all s ∈ [0, 1], all tu ∈ E+.

We have

h+(1, E+) ⊆ ∂B+
1 ,

h+(1, ·)
∣∣
∂B+

1
= id

∣∣
∂B+

1
.

So, E+ is deformable into ∂B+
1 and the latter is a retract of E+. So, from Theorem

6.5, p. 325 of Dugundji [7], we have

∂B+
1 is a deformation retract of E+

⇒ Hk(H
1(Ω), ∂B+

1 ) = Hk(H
1(Ω), E+) for all k ∈ N0

(see Motreanu-Motreanu-Papageorgiou [14] (p. 143)),

⇒ Hk(H
1(Ω), ∂B+

1 ) = Hk(H
1(Ω), ψm+ ) for all k ∈ N0 (see (53)).(54)

From (44) and Motreanu-Motreanu-Papageorgiou [14] (p. 147), we have

Hk(H
1(Ω), ∂B+

1 ) = 0 for all k ∈ N0,

⇒ Hk(H
1(Ω), ψm+ ) = 0 for all k ∈ N0 (see (54)).(55)

Choosing m < 0 even more negative if necessary (see (49)), from (55) we infer that

Ck(ψ+,∞) = 0 for all k ∈ N0 (recall Kψ+ is finite).

In a similar fashion, we show that

Ck(ψ−,∞) = 0 for all k ∈ N0.

�

Let ϕ : H1(Ω)→ R be the energy (Euler) functional for problem (1) defined by

ϕ(u) =
1

2
η(u)−

∫
Ω

F (z, u)dz for all u ∈ H1(Ω).

Evidently ϕ ∈ C1(H1(Ω)).
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Proposition 3. If hypotheses H(ξ), H(β), H hold, then the functional ϕ satisfies the
C-condition.

Proof. Consider a sequence {un}n≥1 ⊆ H1(Ω) such that

|ϕ(un)| ≤M9 for some M9 > 0, all n ∈ N,(56)

(1 + ‖un‖)ϕ′(un)→ 0 in H1(Ω)∗ as n→ +∞.(57)

From (57) we have∣∣∣∣〈A(un), h〉+

∫
Ω

ξ(z)unhdz +

∫
∂Ω

β(z)unhdσ −
∫

Ω

f(z, un)hdz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

(58)

for all h ∈ H1(Ω), with εn → 0+.

In (58) we choose h = un ∈ H1(Ω). Then

(59) −η(un) +

∫
Ω

f(z, un)undz ≤ εn for all n ∈ N.

Also, from (56) we have

(60) η(un)−
∫

Ω

2F (z, un)dz ≤ 2M9 for all n ∈ N.

We add (59) and (60) and obtain that

(61)

∫
Ω

e(z, un)dz ≤M10 for some M10 > 0, all n ∈ N.

As in the proof of Proposition 1, using (61) we will show the boundedness of {un}n≥1 ⊆
H1(Ω). We argue indirectly. So, suppose that

(62) ‖un‖ → +∞.

Let yn =
un
‖un‖

, n ∈ N. We have ‖yn‖ = 1 for all n ∈ N. So, we may assume that

yn
w−→ y in H1(Ω) and yn → y in Lτ (Ω) and in L2(∂Ω)(63)

(recall that τ = max

{
2s

s− 1
, r

}
).

If y 6= 0, then as in the proof of Proposition 1, we reach a contradiction.
If y = 0, then for k ≥ 1 we set vn = (2k)1/2yn, n ∈ N. We have

vn → 0 in Lr(Ω) (see (63)),

⇒
∫

Ω

F (z, vn)dz → 0 (see hypothesis H(i)).(64)

From (62) we see that we can find n0 ∈ N such that

(65) (2k)1/2 1

‖un‖
≤ 1 for all n ≥ n0.

Let tn ∈ [0, 1] be such that

(66) ϕ(tnun) = max[ϕ(tun) : 0 ≤ t ≤ 1], for all n ∈ N.
Then (65) and (66) imply that

ϕ(tnun) ≥ ϕ(vn)
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= kη(yn)−
∫

Ω

F (z, vn)dz

= k[η(yn) + µ‖yn‖2
2]−

∫
Ω

F (z, vn)dz − µk‖yn‖2
2

≥ kc0 −
∫

Ω

F (z, vn)dz − kµ‖yn‖2
2

(see (3) and recall that ‖yn‖ = 1, n ∈ N)

≥ k(c0 − µ‖yn‖2
2)− k

∣∣∣∣∫
Ω

F (z, vn)dz

∣∣∣∣ for all n ≥ n0(67)

(recall that k ≥ 1).

From (63) (recall that y = 0) and (64), we see that we can find n1 ∈ N, n1 ≥ n0 such
that

(68) ‖yn‖2
2 <

c0

3µ
and

∣∣∣∣∫
Ω

F (z, vn)dz

∣∣∣∣ < c0

3µ
for all n ≥ n1.

From (67) and (68) it follows that

ϕ(tnun) ≥ k
c0

3µ
for all n ≥ n1.

But k ≥ 1 is arbitrary. So, we infer that

(69) ϕ(tnun)→ −∞ as n→ +∞.
Using (69) and reasoning as in the proof of Proposition 1 (see Claim 1, the part of

the proof after (30)), we reach again a contradiction. So, we conclude that ϕ satisfies
the C-condition. �

We assume that Kϕ is finite. Otherwise, we already have an infinity of distinct
(smooth by the regularity theory of Wang [20]) solutions of problem (1) and so we are
done. The finiteness of Kϕ together with Proposition 3 permit the computation of the
critical groups of ϕ at infinity.

Proposition 4. If hypotheses H(ξ), H(β), H hold, then Ck(ϕ,∞) = 0 for all k ∈ N0.

Proof. As in the proof of Proposition 2, using (45) we show that

(70) ϕ(tu)→ −∞ as t→ +∞ for all u ∈ ∂B1 = {v ∈ H1(Ω) : ‖v‖ = 1}.
For u ∈ ∂B1 and t > 0, we have

d

dt
ϕ(tu) = 〈ϕ′(tu), u〉 (by the chain rule)

=
1

t
〈ϕ′(tu), tu〉

=
1

t

[
η(tu)−

∫
Ω

f(z, tu)(tu)dz

]
≤ 1

t

[
η(tu)−

∫
Ω

2F (z, tu)dz + ‖d‖1

]
(see hypothesis H(iii))

=
1

t
[2ϕ(tu) + ‖d‖1].(71)
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From (70) and (71) it follows that

d

dt
ϕ(tu) < 0 for all t > 0 big.

As in the proof of Proposition 2, invoking the implicit function theorem we can find
γ ∈ C(∂B1) such that

γ > 0 and ϕ(γ(u)u) = ρ0 < −
‖d‖1

2
.

We extend γ(·) on all of H1(Ω) \ {0} by setting

γ̂(u) =
1

‖u‖
γ

(
u

‖u‖

)
for all u ∈ H1(Ω) \ {0}.

Evidently γ̂ ∈ C(H1(Ω) \ {0}) and ϕ(γ̂(u)u) = ρ0. Moreover, we have

(72) ϕ(u) = ρ0 ⇒ γ̂(u) = 1.

So, if we set

(73) γ0(u) =

{
1 if ϕ(u) ≤ ρ0,

γ̂(u) if ρ0 < ϕ(u),

then we infer that

γ0 ∈ C(H1(Ω) \ {0}) (see (72)).

We consider the deformation h : [0, 1]× (H1(Ω) \ {0})→ H1(Ω) \ {0} defined by

h(t, u) = (1− t)u+ tγ0(u)u for all (t, u) ∈ [0, 1]× (H1(Ω) \ {0}).
We have

h(0, u) = u;

h(1, u) = γ0(u)u ∈ ϕρ0 (see (72), (73));

h(t, ·)
∣∣
ϕρ0

= id
∣∣
ϕρ0

(see (73)).

These properties imply that

(74) ϕρ0 is a strong deformation retract of H1(Ω) \ {0}.
Let r̂ : H1(Ω) \ {0} → ∂B1 be the radial retraction map defined by

r̂(u) =
u

‖u‖
for all u ∈ H1(Ω) \ {0}.

Let h0 : [0, 1]× (H1(Ω) \ {0})→ H1(Ω) \ {0} be the deformation defined by

h0(t, u) = (1− t)u+ tr̂(u) for all (t, u) ∈ [0, 1]× (H1(Ω) \ {0}).
This deformation shows that

(75) H1(Ω) \ {0} is deformable into ∂B1.

Moreover, the map r̂(·) shows that

(76) ∂B1 is a retract of H1(Ω) \ {0}.
From (75), (76) and Theorem 6.5, p. 325 of Dugundji [7], we infer that

(77) ∂B1 is a deformation retract of H1(Ω) \ {0}.
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From (74) and (77) it follows that

ϕρ0 and ∂B1 are homotopy equivalent,

⇒ Hk(H
1(Ω), ϕρ0) = Hk(H

1(Ω), ∂B1) for all k ∈ N0(78)

(see Motreanu-Motreanu-Papageorgiou [14] (p. 143)).

The space H1(Ω) is infinite dimensional and so it follows that ∂B1 is contractible (see
Gasiński-Papageorgiou [10], Problems 4.154, 4.159). So, we have

Hk(H
1(Ω), ∂B1) = 0 for all k ∈ N0,

(see Motreanu-Motreanu-Papageorgiou [14] (p. 147)),

⇒ Hk(H
1(Ω), ϕρ0) = 0 for all k ∈ N0 (see (78)).

Choosing ρ0 < −
‖d‖1

2
even more negative if necessary, we conclude that

Ck(ϕ,∞) = 0 for all k ∈ N0.

�

From the proof of Proposition 1 we know that u0 ∈ D+, the positive solution of
problem (1), is a critical point of ψ+ of mountain pass type. So, we have

(79) C1(ψ+, u0) 6= 0

(see Motreanu-Motreanu-Papageorgiou [14] (p. 168)). From (9) it is clear that

ψ+

∣∣∣
C+

= ϕ
∣∣∣
C+

.

Since u0 ∈ D+ and C1(Ω) is dense in H1(Ω), from Chang [5] (p. 14), we infer that

Ck(ϕ, u0) = Ck(ψ+, u0) for all k ∈ N0,(80)

⇒ C1(ϕ, u0) 6= 0 (see (79)).

Because ϕ is not a C2-functional (recall that f(z, ·) is only continuous), in general we
can not say that

Ck(ϕ, u0) = δk,1Z for all k ∈ N0.

Similarly for the negative solution v0 ∈ −D+ (see Proposition 1).
The next proposition, shows that although ϕ lacks smoothness, we can still have a

precise computation of the critical groups of ϕ at u0 ∈ D+ and at v0 ∈ −D+.

Proposition 5. If hypotheses H(ξ), H(β), H hold and u0 ∈ D+, v0 ∈ −D+, from
Proposition 1, are the only nontrivial constant sign solutions of problem (1), then
Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0.

Proof. Recall that
Kψ+ ⊆ D+ ∪ {0}

(see the proof of Proposition 1, Claim 3). We know that

ϕ′
∣∣∣
C+

= ψ′+

∣∣∣
C+

(see (9)).

The critical set Kϕ is the set of positive solutions of (1) and by hypothesis u0 ∈ D+

is the only nontrivial positive solution of problem (1). So, we have

(81) Kψ+ = {0, u0}.
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We choose λ < 0 < s < ψ+(u0) = ϕ(u0) (see the proof of Proposition 1). We consider
the following triple of sets

ψλ+ ⊆ ψs+ ⊆ H1(Ω).

For this triple of sets, we consider the corresponding long exact sequence of singular
homology groups (for notational simplicity, we set H = H1(Ω)).

(82)
· · · −→ Hk(H,ψ

λ
+) i∗−→ Hk(H,ψ

s
+) ∂̂∗−→ Hk−1(ψs+, ψ

λ
+) −→ · · ·

(see Motreanu-Motreanu-Papageorgiou [14] (pp. 143-144)). In (82) i∗ is the homomor-
phism induced by the inclusion

(H,ψλ+) ↪→i (H,ψs+),

while ∂̂∗ is the composed boundary homomorphism (see Motreanu-Motreanu-Papageorgiou
[14] (p. 144)).

Since λ < 0 = ψ+(0), from (81) it follows that

(83) Hk(H,ψ
λ
+) = Ck(ψ+,∞) = 0 for all k ∈ N0 (see Proposition 2).

Also, since s ∈ (0, ψ+(u0)), from (81) and Motreanu-Motreanu-Papageorgiou [14] (p.
157), we have

(84) Hk−1(ψs+, ψ
λ
+) = Ck−1(ψ+, 0) = δk−1,0Z = δk,1Z for all k ∈ N0

(see the proof of Proposition 2, Claim 2).
Similarly, we have

(85) Hk(H,ψ
s
+) = Ck(ψ+, u0) for all k ∈ N0.

Taking into account (83), (84), (85), we see that in (82) only the tail (that is, k = 1)
of the long exact sequence, is nontrivial.

From the rank theorem, we have

rank C1(ψ+, u0) = rank ker ∂̂∗ + rank im ∂̂∗ (see (85))

= rank im i∗ + rank im ∂̂∗ (because (82) is exact)

= rank im ∂̂∗ (see (83))

≤ 1 (see (84))

⇒ Ck(ψ+, u0) = δk,1Z for all k ∈ N0

(see (79) and recall that only the tail of (82) is nontrivial)

⇒ Ck(ϕ, u0) = δk,1Z for all k ∈ N0 (see (80)).

Similarly we show that

Ck(ϕ, v0) = δk,1Z for all k ∈ N0.

�

Now we are ready for the multiplicity theorem (three solutions theorem).

Theorem 2. If hypotheses H(ξ), H(β), H hold, then problem (1) has at least three
nontrivial smooth solutions u0 ∈ D+, v0 ∈ −D+, y0 ∈ C1(Ω) \ {0}.
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Proof. From Proposition 1, we already have two nontrivial constant sign smooth solu-
tions

u0 ∈ D+ and v0 ∈ −D+.

We assume that

(86) Kϕ = {0, u0, v0}.
Otherwise we already have a third nontrivial solution which is in C1(Ω) (by the

regularity theory of Wang [20]). From (86) and Proposition 5, we have

(87) Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0.

As in the proof of Proposition 1, Claim 2, we show that

u = 0 is a local minimizer of ϕ,

⇒ Ck(ϕ, 0) = δk,0Z for all k ∈ N0.(88)

From Proposition 4 we have

(89) Ck(ϕ,∞) = 0 for all k ∈ N0.

From (86), (87), (88), (89) and the Morse relation with t = −1, we have

2(−1)1 + (−1)0 = 0,

a contradiction. So, we can find y0 ∈ H1(Ω) such that

y0 ∈ Kϕ and y0 6∈ {0, u0, v0}.
This is the third nontrivial solution of problem (1) and the regularity theory of Wang

[20] implies that y0 ∈ C1(Ω) \ {0}. �
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