SUPERLINEAR ROBIN PROBLEMS WITH INDEFINITE LINEAR PART

NIKOLAOS S. PAPAGEORGIOU, CALOGERO VETRO, FRANCESCA VETRO

ABSTRACT. We consider a semilinear Robin problem with an indefinite linear part and a superlinear reaction term, which does not satisfy the usual in such cases ARcondition. Using variational methods, together with truncation-perturbation techniques and Morse theory (critical groups), we establish the existence of three nontrivial solutions. Our result extends in different ways the multiplicity theorem of Wang.

1. INTRODUCTION

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with a C^2 -boundary $\partial \Omega$. In this paper we study the following semilinear Robin problem

(1)
$$\begin{cases} -\Delta u(z) + \xi(z)u(z) = f(z, u(z)) & \text{in } \Omega, \\ \frac{\partial u}{\partial n} + \beta(z)u = 0 & \text{on } \partial\Omega. \end{cases}$$

In this problem $\xi \in L^s(\Omega)$, s > N, is an indefinite potential function. So, the linear part of problem (1) is indefinite. The reaction term f(z, x) is a Carathéodory function (that is, for all $x \in \mathbb{R}$, $z \to f(z, x)$ is measurable and, for a.a. $z \in \Omega$, $x \to f(z, x)$ is continuous), which exhibits superlinear growth near $\pm \infty$ but without satisfying the usual in such cases Ambrosetti-Rabinowitz condition (the AR-condition for short). In the boundary condition, $\frac{\partial u}{\partial n}$ denotes the usual normal derivative on $\partial\Omega$ defined by extension of the map

$$u \to \frac{\partial u}{\partial n} = (\nabla u, n)_{\mathbb{R}^N} \text{ for all } u \in C^1(\overline{\Omega}),$$

with $n(\cdot)$ being the outward unit normal on $\partial\Omega$. The boundary coefficient β belongs in $W^{1,\infty}(\partial\Omega)$ and $\beta(z) \geq 0$ for all $z \in \partial\Omega$. If $\beta \equiv 0$, then we recover the Neumann problem.

Our aim in this paper, is to extend the well-known multiplicity result (three solutions theorem) of Wang [21]. In Wang [21] the problem is Dirichlet, there is no potential term (that is, $\xi \equiv 0$ and so the linear part of the equation in [21] is coercive) and the reaction term is autonomous (that is, f(z, x) = f(x)), $f \in C^1(\mathbb{R}, \mathbb{R})$, f(0) = f'(0) = 0and satisfies the AR-condition. Here, we weaken significantly all these requirements. We mention, that the lack of smoothness for the function $x \to f(z, x)$ (in our case this function is only continuous and not necessarily C^1), makes the use of Morse theory problematic. It is well-known that the most powerful tools of Morse theory, are available if the energy (Euler) functional of the problem is C^2 , which is not possible if $f(z, \cdot)$ is only continuous.

 $Key\ words\ and\ phrases.$ Indefinite potential function, superlinear reaction term, regularity theory, critical groups, three solutions theorem, Robin boundary condition.

²⁰¹⁰ Mathematics Subject Classification: 35J20, 35J60, 58E05.

We mention that superlinear problems with coercive left hand side, were studied by Miyagaki-Souto [13] (parametric semilinear Dirichlet problems) and by Aizicovici-Papageorgiou-Staicu [2] (Neumann problems), [3] (Dirichlet problems), Fang-Liu [8], Li-Yang [11], Liu [12], Sun [19] (all four works prove only existence theorems) for equations driven by the *p*-Laplacian. Finally we mention that multiplicity theorems for different classes of semilinear problems with an indefinite potential term, were proved by Papageorgiou-Papalini [15] (Dirichlet problems). Papageorgiou-Smyrlis [18] (Neumann problems) and Papageorgiou-Rădulescu [17] (Robin problems).

Our approach uses variational methods based on the critical point theory and truncation-perturbation techniques coupled with Morse theory (critical groups).

2. MATHEMATICAL BACKGROUND

Let X be a Banach space and let X^* denote its topological dual. By $\langle \cdot, \cdot \rangle$ we denote the duality brackets for the pair (X^*, X) . Given $\varphi \in C^1(X, \mathbb{R})$, we say that φ satisfies the "Cerami condition" (the "C-condition" for short), if the following property holds:

"Every sequence $\{u_n\}_{n\geq 1} \subseteq X$ such that $\{\varphi(u_n)\}_{n\geq 1} \subseteq \mathbb{R}$ is bounded and $(1+||u_n||)\varphi'(u_n) \to 0$ in X^* as $n \to +\infty$, admits a strongly convergent subsequence."

This is a compactness-type condition on the functional φ and it leads to a deformation theorem from which one can derive the minimax theory for the critical values of φ . Prominent in that theory is the celebrated "mountain pass theorem" of Ambrosetti-Rabinowitz [4]. Here we state this result in a slightly more general form (see Gasiński-Papageorgiou [9]).

Theorem 1. If $\varphi \in C^1(X, \mathbb{R})$ satisfies the C-condition, $u_0, u_1 \in X$, $||u_1 - u_0|| > \rho > 0$, $\max\{\varphi(u_0), \varphi(u_1)\} < \inf[\varphi(u) : ||u - u_0|| = \rho] = m_\rho \text{ and } c = \inf_{\gamma \in \Gamma} \max_{0 \le t \le 1} \varphi(\gamma(t))$ with $\Gamma = \{\gamma \in C([0, 1], X) : \gamma(0) = u_0, \gamma(1) = u_1\}$, then $c \ge m_\rho$ and c is a critical value of φ .

The spaces which we will use in the study of problem (1) are the Sobolev space $H^1(\Omega)$, the Banach space $C^1(\overline{\Omega})$ and the "boundary" spaces $L^p(\partial\Omega)$ $(1 \le p \le \infty)$.

The space $H^1(\Omega)$ is a Hilbert space with inner product

$$(u,v) = \int_{\Omega} uvdz + \int_{\Omega} (\nabla u, \nabla v)_{\mathbb{R}^N} dz \text{ for all } u, v \in H^1(\Omega)$$

and corresponding norm

$$||u|| = [||u||_2^2 + ||\nabla u||_2^2]^{1/2}$$
 for all $u \in H^1(\Omega)$.

The Banach space $C^1(\overline{\Omega})$ is an ordered Banach space with positive cone given by

$$C_{+} = \{ u \in C^{1}(\overline{\Omega}) : u(z) \ge 0 \text{ for all } z \in \overline{\Omega} \}.$$

This cone has a nonempty interior which contains the set

$$D_{+} = \{ u \in C_{+} : u(z) > 0 \text{ for all } z \in \overline{\Omega} \}.$$

On $\partial\Omega$ we consider the (N-1)-dimensional Hausdorff (surface) measure $\sigma(\cdot)$. Then using $\sigma(\cdot)$ we can define in the usual way the boundary Lebesgue spaces $L^p(\partial\Omega)$ $(1 \le p \le \infty)$.

From the theory of Sobolev spaces, we know that there exists a unique continuous linear map $\gamma_0: H^1(\Omega) \to L^2(\partial\Omega)$, known as the trace map such that

$$\gamma_0(u) = u \Big|_{\partial\Omega}$$
 for all $u \in H^1(\Omega) \cap C(\Omega)$

So, we understand the trace map as an expression of the "boundary values" of a Sobolev function. We know that the linear map γ_0 is compact into $L^p(\Omega)$ with $p \in \left[1, \frac{2(N-1)}{N-2}\right)$ if $N \geq 3$ and into $L^p(\Omega)$ for all $p \geq 1$ if N = 1, 2. In what follows, for the sake of notational simplicity, we drop the use of the trace map γ_0 . All restrictions of Sobolev functions on $\partial \Omega$, are understood in the sense of traces.

Also, we will need the principal eigenvalue in the spectrum of $u \to -\Delta u + \xi(z)u$ with Robin boundary condition. So, we consider the following linear eigenvalue problem:

(2)
$$\begin{cases} -\Delta u(z) + \xi(z)u(z) = \widehat{\lambda}u(z) & \text{in } \Omega, \\ \frac{\partial u}{\partial n} + \beta(z)u = 0 & \text{on } \partial\Omega. \end{cases}$$

Suppose that

- $\xi \in L^{N/2}(\Omega)$ if $N \ge 3$, $\xi \in L^p(\Omega)$ with p > 1 if N = 2 and $\xi \in L^1(\Omega)$ if N = 1; $\beta \in W^{1,\infty}(\partial\Omega), \ \beta(z) \ge 0$ for all $z \in \partial\Omega$.

Consider the C¹-functional $\eta: H^1(\Omega) \to \mathbb{R}$ defined by

$$\eta(u) = \|\nabla u\|_2^2 + \int_{\Omega} \xi(z) u^2 dz + \int_{\partial \Omega} \beta(z) u^2 d\sigma \quad \text{for all } u \in H^1(\Omega).$$

From D'Aguì-Marano-Papageorgiou [6], we know that there exists $\mu > 0$ such that

(3)
$$\eta(u) + \mu \|u\|_2^2 \ge c_0 \|u\|^2$$
 for all $u \in H^1(\Omega)$, some $c_0 > 0$

Using (3) and the spectral theorem for compact self-adjoint operators on a Hilbert space, we can have a complete description of the spectrum of (2). So, we obtain a strictly increasing sequence $\{\widehat{\lambda}_k\}_{k\geq 1}$ of distinct eigenvalues such that $\widehat{\lambda}_k \to +\infty$ as $k \to +\infty$. If by $E(\widehat{\lambda}_k), k \in \mathbb{N}$, we denote the eigenspace corresponding to the eigenvalue $\widehat{\lambda}_k$, then we have the following orthogonal direct sum decomposition

$$H^1(\Omega) = \bigoplus_{k \ge 1} E(\widehat{\lambda}_k)$$

For the first eigenvalue $\widehat{\lambda}_1$, we have the following properties

(4)
$$\widehat{\lambda}_1 = \inf\left[\frac{\eta(u)}{\|u\|_2^2} : u \in H^1(\Omega), u \neq 0\right];$$

(5)
$$\widehat{\lambda}_1$$
 is simple (that is, dim $E(\widehat{\lambda}_1) = 1$)

The infimum in (4) is realized on $E(\hat{\lambda}_1)$. This in conjunction with (5) imply that the elements of $E(\hat{\lambda}_1)$ have fixed sign. Let \hat{u}_1 denote the L^2 -normalized (that is, $\|\hat{u}_1\|_2 = 1$) positive eigenfunction corresponding to $\widehat{\lambda}_1$, If $\xi \in L^s(\Omega)$ s > N, then using the regularity theory of Wang [20], we have $\hat{u}_1 \in C_+ \setminus \{0\}$, In addition Harnack's inequality (see, for example, Motreanu-Motreanu-Papageorgiou [14] (p. 212)) implies that $\hat{u}_1(z) > 0$ for all $z \in \Omega$. Finally if $\xi^+ \in L^{\infty}(\Omega)$, then Hopf's theorem (see, for example, Gasiński-Papageorgiou [9] (p. 738)) implies that $\hat{u}_1 \in D_+$. Finally, we mention that the eigenfunctions corresponding to an eigenvalue $\widehat{\lambda}_k, k \in \mathbb{N}, k \neq 1$, are nodal (that is, sign changing) and the eigenspace $E(\widehat{\lambda}_k)$ has the "Unique Continuation Property", that is, if $u \in E(\widehat{\lambda}_k)$ and u vanishes on a set of positive measure, then u = 0.

For details, see D'Aguì-Marano-Papageorgiou [6] and Papageorgiou-Smyrlis [18].

Let X be a Banach space, $\varphi \in C^1(X, \mathbb{R})$ and $c \in \mathbb{R}$. We introduce the following sets

$$\varphi^{c} = \{ u \in X : \varphi(u) \le c \},\$$

$$K_{\varphi} = \{ u \in X : \varphi'(u) = 0 \},\$$

$$K_{\varphi}^{c} = \{ u \in K_{\varphi} : \varphi(u) = c \}.$$

Let (Y_1, Y_2) be a topological pair such that $Y_2 \subseteq Y_1 \subseteq X$. For every $k \in \mathbb{N}_0$, by $H_k(Y_1, Y_2)$ we denote the k^{th} -relative singular homology group with integer coefficients for the pair (Y_1, Y_2) . Recall that if $k \in -\mathbb{N}$, then $H_k(Y_1, Y_2) = 0$. Suppose that $u_0 \in K_{\varphi}^c$ is isolated. Then the critical groups of φ at u_0 are defined by

$$C_k(\varphi, u_0) = H_k(\varphi^c \cap U, \varphi^c \cap U \setminus \{u_0\}) \text{ for all } k \in \mathbb{N}_0,$$

with U being a neighborhood of u_0 such that $K_{\varphi} \cap \varphi^c \cap U = \{u_0\}$. The excision property of singular homology theory implies that this definition is independent of the choice of the neighborhood U.

Suppose that $\varphi \in C^1(X, \mathbb{R})$ satisfies the *C*-condition and $-\infty < \inf \varphi(K_{\varphi})$. Let $c < \inf \varphi(K_{\varphi})$. Then the critical groups of φ at infinity, are defined by

$$C_k(\varphi, \infty) = H_k(X, \varphi^c) \text{ for all } k \in \mathbb{N}_0.$$

From the second deformation theorem (see Gasiński-Papageorgiou [9], (p. 628)), we know that if $c, c' < \inf \varphi(K_{\varphi})$, then the sets φ^c and $\varphi^{c'}$ are homotopy equivalent and so

$$H_k(X, \varphi^c) = H_k(X, \varphi^{c'}) \text{ for all } k \in \mathbb{N}_0$$

(see Motreanu-Motreanu-Papageorgiou [14] (p. 143)). So, it follows that the above definition of critical groups at infinity is independent of the choice of the level $c < \inf \varphi(K_{\varphi})$.

Suppose that the critical set K_{φ} is finite. We introduce the following polynomials in $t \in \mathbb{R}$:

$$M(t, u) = \sum_{k \in \mathbb{N}_0} \operatorname{rank} C_k(\varphi, u) t^k \quad \text{for all } t \in \mathbb{R}, \text{ all } u \in K_{\varphi},$$
$$P(t, \infty) = \sum_{k \in \mathbb{N}_0} \operatorname{rank} C_k(\varphi, \infty) t^k \quad \text{for all } t \in \mathbb{R}.$$

The "Morse relation" says that

$$\sum_{u \in K_{\varphi}} M(t, u) = P(t, \infty) + (1+t)Q(t) \quad \text{for all } t \in \mathbb{R},$$

with $Q(t) = \sum_{k \in \mathbb{N}_0} \beta_k t^k$ being a formal series in $t \in \mathbb{R}$ with nonnegative integer coefficients β_k .

In what follows $A \in \mathcal{L}(H^1(\Omega), H^1(\Omega)^*)$ is the continuous linear operator defined by

$$\langle A(u), v \rangle = \int_{\Omega} (\nabla u, \nabla v)_{\mathbb{R}^N} dz \text{ for all } u, v \in H^1(\Omega).$$

Also, we say that a Banach space X has the "Kadec-Klee property", if the following implication holds:

$$u_n \xrightarrow{w} u$$
 in X and $||u_n|| \to ||u|| \Rightarrow u_n \to u$ in X.

We know that locally uniformly convex Banach spaces (in particular Hilbert spaces), have the Kadec-Klee property (see Gasiński-Papageorgiou [9] (p. 901)).

Finally we introduce some basic notation which will be used in the sequel. So, if $x \in \mathbb{R}$, then we set $x^{\pm} = \max\{\pm x, 0\}$. For $u \in W^{1,p}(\Omega)$ we define

$$u^{\pm}(\cdot) = u(\cdot)^{\pm}.$$

We know that

$$u = u^{+} - u^{-}, \ |u| = u^{+} + u^{-}, \ u^{\pm} \in W^{1,p}(\Omega).$$

By $|\cdot|_N$ we denote the Lebesgue measure on \mathbb{R}^N and by 2^* the critical Sobolev exponent defined by

$$2^* = \begin{cases} \frac{2N}{N-2} & \text{if } N \ge 3, \\ +\infty & \text{if } N = 1, 2. \end{cases}$$

3. THREE SOLUTIONS THEOREM

The hypotheses on the data of problem (1) are the following: $H(\xi): \xi \in L^s(\Omega)$ with s > N and $\xi^+ \in L^{\infty}(\Omega)$. $H(\beta): \beta \in W^{1,\infty}(\partial\Omega)$ and $\beta(z) \ge 0$ for all $z \in \partial\Omega$.

Remark 1. If $\beta \equiv 0$, then we have the Neumann problem.

$$\begin{array}{l} H: \ f:\Omega\times\mathbb{R}\to\mathbb{R} \ \text{is a Carathéodory function such that} \ f(z,0)=0 \ \text{for a.a.} \ z\in\Omega \ \text{and}\\ (\text{i}) \ |f(z,x)|\leq a(z)(1+|x|^{r-1}) \ \text{for a.a.} \ z\in\Omega, \ \text{all} \ x\in\mathbb{R}, \ \text{with} \ 2< r<2^*;\\ (\text{ii}) \ \text{if} \ F(z,x)=\int_0^x f(z,s)ds, \ \text{then} \ \lim_{x\to\pm\infty}\frac{F(z,x)}{x^2}=+\infty \ \text{uniformly for a.a.} \ z\in\Omega;\\ (\text{iii}) \ \text{if} \ e(z,x)=f(z,x)x-2F(z,x), \ \text{then there exists} \ d\in L^1(\Omega) \ \text{such that} \\ e(z,x)\leq e(z,y)+d(z) \ \ \text{for a.a.} \ z\in\Omega, \ \text{all} \ 0\leq x\leq y \ \text{or} \ y\leq x\leq 0;\\ (\text{iv) there exist} \ \vartheta_0>0 \ \text{and a function} \ \vartheta\in L^\infty(\Omega) \ \text{such that} \end{array}$$

$$\begin{split} \vartheta(z) &\leq \widehat{\lambda}_1 \text{ for a.a. } z \in \Omega, \ \vartheta \not\equiv \widehat{\lambda}_1, \\ &- \vartheta_0 \leq \liminf_{x \to 0} \frac{f(z,x)}{x} \leq \limsup_{x \to 0} \frac{f(z,x)}{x} \leq \vartheta(z) \text{ uniformly for a.a. } z \in \Omega. \end{split}$$

Remark 2. Evidently hypotheses H(ii), (iii) imply that

$$\lim_{x \to \pm \infty} \frac{f(z, x)}{x} = +\infty \quad \text{uniformly for a.a. } z \in \Omega.$$

So the reaction term of problem (1) is superlinear in the x-variable. However, we point out that the superlinearity of $f(z, \cdot)$ is not formulated using the common for such problems AR-condition. We recall that the AR-condition says that there exist q > 2 and M > 0 such that

(6)
$$0 < qF(z, x) \le f(z, x)x \text{ for a.a. } z \in \Omega, \text{ all } |x| \ge M,$$

(7)
$$0 < \operatorname{essinf}_{\Omega} F(\cdot, \pm M)$$

Integrating (6) and using (7), we obtain the following weaker condition

(8)
$$c_1|x|^q \le F(z,x)$$
 for a.a. $z \in \Omega$, all $|x| \ge M$, some $c_1 > 0$.

From (8) and (6) we see that the AR-condition implies that $f(z, \cdot)$ has at least (q-1)polynomial growth near $\pm \infty$. This excludes from consideration superlinear nonlinearities with "slower" growth near $\pm \infty$ (see the examples below). Here, instead of the
AR-condition (see (6), (7)), we employ a quasimonotonicity condition on the function $e(z, \cdot)$ (see hypothesis H(iii)). This condition is a little more general than the one used
by Li-Yang [11]. If there exists M > 0 such that

$$x \to \frac{f(z,x)}{x}$$
 is nondecreasing on $[M, +\infty)$,
 $x \to \frac{f(z,x)}{x}$ is nonincreasing on $(-\infty, -M]$,

then hypothesis H(iii) is satisfied. At zero we have nonuniform nonresonance with respect to the principal eigenvalue $\widehat{\lambda}_1$ (see hypothesis H(iii)).

Example 1. The following functions satisfy hypotheses H. For the sake of simplicity we drop the z-dependence.

$$f_1(x) = \begin{cases} cx & \text{if } |x| \le 1, \\ |x|^{r-2}x + c - 1 & \text{if } 1 < |x|, \end{cases} \text{ with } c < \widehat{\lambda}_1, \ 2 < r < 2^*, \\ f_2(x) = \begin{cases} c(x - |x|^{\tau-2}x) & \text{if } |x| \le 1, \\ |x| \ln |x| & \text{if } 1 < |x|, \end{cases} \text{ with } c < \widehat{\lambda}_1, \ 2 < \tau. \end{cases}$$

Note that f_2 does not satisfy the AR-condition.

We start by producing two nontrivial constant sign smooth solutions.

Proposition 1. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then problem (1) has at least two nontrivial constant sign solutions $u_0 \in D_+$ and $v_0 \in -D_+$.

Proof. Let $\mu > 0$ be as in (3) and consider the Carathéodory function $g_+ : \Omega \times \mathbb{R} \to \mathbb{R}$ defined by

(9)
$$g_{+}(z,x) = \begin{cases} 0 & \text{if } x \le 0, \\ f(z,x) + \mu x & \text{if } 0 < x. \end{cases}$$

We set $G_+(z,x) = \int_0^x g_+(z,s) ds$ and consider the C^1 -functional $\psi_+ : H^1(\Omega) \to \mathbb{R}$ defined by

$$\psi_+(u) = \frac{1}{2}\eta(u) + \frac{\mu}{2} ||u||_2^2 - \int_{\Omega} G_+(z,u)dz$$
 for all $u \in H^1(\Omega)$.

<u>Claim 1</u>: The functional ψ_+ satisfies the C-condition.

Let $\{u_n\}_{n\geq 1} \subseteq H^1(\Omega)$ be a sequence such that

(10)
$$|\psi_+(u_n)| \le M_1 \text{ for some } M_1 > 0, \text{ all } n \in \mathbb{N},$$

(11) $(1 + ||u_n||)\psi'_+(u_n) \to 0 \text{ in } H^1(\Omega)^*.$

 $\mathbf{6}$

From (11) we have

(12)

$$\left| \langle A(u_n), h \rangle + \int_{\Omega} (\xi(z) + \mu) u_n h dz + \int_{\partial \Omega} \beta(z) u_n h d\sigma - \int_{\Omega} g_+(z, u_n) h dz \right| \le \frac{\varepsilon_n \|h\|}{1 + \|u_n\|}$$
for all $h \in H^1(\Omega)$, with $\varepsilon_n \to 0^+$.

In (12) we choose $h = -u_n^- \in H^1(\Omega)$. Then $n(u_n^-) + \mu ||u_n^-||^2 \leq c$ for all $n \in \mathbb{N}$ (c

$$\begin{aligned} &\eta(u_n) + \mu \|u_n\|_2^2 \le \varepsilon_n \quad \text{for all } n \in \mathbb{N} \text{ (see (9))}, \\ \Rightarrow \quad c_0 \|u_n^-\|^2 \le \varepsilon_n \quad \text{for all } n \in \mathbb{N} \text{ (see (3))}, \\ \Rightarrow \quad u_n^- \to 0 \text{ in } H^1(\Omega). \end{aligned}$$

From (10) and (13), we have

(14)
$$\|\nabla u_n^+\|_2^2 + \int_{\Omega} \xi(z)(u_n^+)^2 dz + \int_{\partial\Omega} \beta(z)(u_n^+)^2 d\sigma - \int_{\Omega} 2F(z,u_n^+) dz \le M_2$$
for some $M_2 > 0$, all $n \in \mathbb{N}$ (see (9)).

On the other hand, if in (12) we choose $h = u_n^+ \in H^1(\Omega)$, then (15)

$$-\|\nabla u_n^+\|_2^2 - \int_{\Omega} \xi(z)(u_n^+)^2 dz - \int_{\partial\Omega} \beta(z)(u_n^+)^2 d\sigma + \int_{\Omega} f(z,u_n^+)u_n^+ dz \le \varepsilon_n \quad \text{for all } n \in \mathbb{N}.$$
We add (14) and (15) and obtain

We add (14) and (15) and obtain

(16)
$$\int_{\Omega} e(z, u_n^+) dz \le M_3 \quad \text{for some } M_3 > 0, \text{ all } n \in \mathbb{N}.$$

We show that $\{u_n^+\}_{n\geq 1} \subseteq H^1(\Omega)$ is bounded. Arguing by contradiction, suppose that by passing to a subsequence if necessary, we have

$$\|u_n^+\| \to +\infty.$$

Let $y_n = \frac{u_n^+}{\|u_n^+\|}$, $n \in \mathbb{N}$. Then $\|y_n\| = 1$, $y_n \ge 0$ for all $n \in \mathbb{N}$ and so we may assume that

(13)

(18)
$$y_n \xrightarrow{w} y$$
 in $H^1(\Omega)$ and $y_n \to y$ in $L^{\tau}(\Omega)$ and in $L^2(\partial\Omega), y \ge 0$,
with $\tau = \max\left\{\frac{2s}{s-1}, r\right\}$ (note that $\tau < 2^*$).

First suppose that $y \neq 0$ and let $S = \{z \in \Omega : y(z) > 0\}$. Then $|S|_N > 0$ and we have $u_n^+(z) \to +\infty$ for a.a. $z \in S$.

Using hypothesis H(ii), we have

(19)
$$\frac{F(z, u_n^+)}{\|u_n^+\|^2} = \frac{F(z, u_n^+)}{(u_n^+)^2} y_n^2 \to +\infty \quad \text{for a.a. } z \in S.$$

Using (19) and Fatou's lemma (note that hypothesis H(ii) permits its use), we have

(20)
$$\int_{S} \frac{F(z, u_n^+)}{\|u_n^+\|^2} dz \to +\infty \quad \text{as } n \to +\infty.$$

Hypothesis H(ii) implies that we can find $M_4 > 0$ such that $F(z, x) \ge 0$ for a.a. $z \in \Omega$, all $|x| \ge M_4$. (21)

Also, from (17) we see that without any loss of generality we may assume that

(22)
$$||u_n^+|| \ge 1 \text{ for all } n \in \mathbb{N}.$$

We have

(23)
$$\int_{\Omega} \frac{F(z, u_n^+)}{\|u_n^+\|^2} dz = \int_{S} \frac{F(z, u_n^+)}{\|u_n^+\|^2} dz + \int_{\Omega \setminus S} \frac{F(z, u_n^+)}{\|u_n^+\|^2} dz \quad \text{for all } n \in \mathbb{N}.$$

We estimate the second integral in the right hand side of (23). Then

$$\int_{\Omega \setminus S} \frac{F(z, u_n^+)}{\|u_n^+\|^2} dz = \int_{(\Omega \setminus S) \cap \{u_n^+ \ge M_4\}} \frac{F(z, u_n^+)}{\|u_n^+\|^2} dz + \int_{(\Omega \setminus S) \cap \{u_n^+ < M_4\}} \frac{F(z, u_n^+)}{\|u_n^+\|^2} dz$$
(24)
$$\geq -M_5 \quad \text{for some } M_5 > 0, \text{ all } n \in \mathbb{N}$$
(see (21), (22) and hypothesis $H(i)$).

Returning to (23) and using (24), we obtain

(25)
$$\int_{\Omega} \frac{F(z, u_n^+)}{\|u_n^+\|^2} dz \ge \int_{S} \frac{F(z, u_n^+)}{\|u_n^+\|^2} dz - M_5 \quad \text{for all } n \in \mathbb{N},$$
$$\lim_{n \to +\infty} \int_{\Omega} \frac{F(z, u_n^+)}{\|u_n^+\|^2} dz = +\infty \quad (\text{see } (20)).$$

From (10) and (13), we have

$$\begin{split} \int_{\Omega} 2F(z, u_n^+) dz &\leq M_6 + \eta(u_n^+) \quad \text{for some } M_6 > 0, \text{ all } n \in \mathbb{N} \\ &\leq M_6 + \|\nabla u_n^+\|_2^2 + \|\xi^+\|_{\infty} \|u_n^+\|_2^2 + \int_{\partial\Omega} \beta(z)(u_n^+)^2 d\sigma \\ &\quad \text{for all } n \in \mathbb{N} \text{ (see hypothesis } H(\xi)), \end{split}$$

$$\Rightarrow \int_{\Omega} \frac{2F(z, u_n^+)}{\|u_n^+\|^2} dz \le \frac{M_6}{\|u_n^+\|^2} + \|\nabla y_n\|_2^2 + \|\xi^+\|_{\infty} \|y_n\|_2^2 + \int_{\partial\Omega} \beta(z) y_n^2 d\sigma$$
$$\le c_2(1 + \|y_n\|^2) = 2c_2$$

for some $c_2 > 0$, all $n \in \mathbb{N}$ (recall that $||y_n||_1 = 1$ for all $n \in \mathbb{N}$).

Comparing (25) and (26) we have a contradiction. Next suppose that y = 0. Let k > 0 and set $v_n = (2k)^{1/2} y_n \in H^1(\Omega), n \in \mathbb{N}$. Then

$$v_n \to 0$$
 in $L^r(\Omega)$ (see (18) and recall that $y = 0$),

(27)
$$\Rightarrow \int_{\Omega} F(z, v_n) dz \to 0$$
 (see hypothesis $H(i)$).

From (17) we see that we can find $n_0 \in \mathbb{N}$ such that

(28)
$$(2k)^{1/2} \frac{1}{\|u_n^+\|} \le 1 \text{ for all } n \ge n_0.$$

Let $t_n \in [0, 1]$ be such that

(29)
$$\psi_+(t_n u_n^+) = \max[\psi_+(t u_n^+) : 0 \le t \le 1] \quad \text{for all } n \in \mathbb{N}.$$

From (28) and (29) it follows that

$$\psi_+(t_n u_n^+) \ge \psi_+(v_n)$$

8

(26)

$$= k[\eta(y_n) + \mu \|y_n\|_2^2] - \int_{\Omega} F(z, v_n) dz - \frac{\mu}{2} \|v_n\|_2^2 \quad (\text{see } (9))$$

$$\ge kc_0 - \int_{\Omega} F(z, v_n) dz - \frac{\mu}{2} \|v_n\|_2^2 \quad \text{for all } n \ge n_0$$

(see (3) and recall that $\|y_n\| = 1$ for all $n \in \mathbb{N}$).

Since $v_n \to 0$ in $L^2(\Omega)$ and using also (27), we see that we can find $n_1 \ge n_0$ such that

$$\psi_+(t_n u_n^+) \ge \frac{kc_0}{2}$$
 for all $n \ge n_1$.

But recall that k > 0 is arbitrary. So, we infer that

(30)
$$\psi_+(t_n u_n^+) \to +\infty \text{ as } n \to +\infty$$

We know that

$$\psi_{+}(0) = 0$$
 and $\psi_{+}(u_{n}^{+}) \leq M_{7}$ for some $M_{7} > 0$, all $n \in \mathbb{N}$ (see (10) and (13))

Therefore (30) implies that we can find $n_2 \in \mathbb{N}$ such that

(31) $t_n \in (0,1) \quad \text{for all } n \ge n_2.$

From (29) and (31), we have

$$\frac{d}{dt}\psi_{+}(tu_{n}^{+})\big|_{t=t_{n}} = 0 \quad \text{for all } n \ge n_{2},$$

$$\Rightarrow \quad \langle \psi_{+}'(t_{n}u_{n}^{+}), u_{n}^{+} \rangle = 0 \quad \text{for all } n \ge n_{2} \text{ (by the chain rule)},$$

$$\Rightarrow \quad \langle \psi_{+}'(t_{n}u_{n}^{+}), t_{n}u_{n}^{+} \rangle = 0 \quad \text{for all } n \ge n_{2},$$

$$(32) \qquad \Rightarrow \quad \eta(t_{n}u_{n}^{+}) = \int_{\Omega} f(z, t_{n}u_{n}^{+})(t_{n}u_{n}^{+})dz \quad \text{for all } n \ge n_{2} \text{ (see (9))}$$

Hypothesis H(iii) and (31) imply that

$$\int_{\Omega} e(z, t_n u_n^+) dz \leq \int_{\Omega} e(z, u_n^+) dz + \|d\|_1 \quad \text{for all } n \geq n_2,$$

$$\Rightarrow \quad \int_{\Omega} e(z, t_n u_n^+) dz \leq M_8 \quad \text{for some } M_8 > 0, \text{ all } n \geq n_2 \text{ (see (16))},$$

$$\Rightarrow \quad \int_{\Omega} f(z, t_n u_n^+) (t_n u_n^+) dz \leq M_8 + \int_{\Omega} 2F(z, t_n u_n^+) dz \quad \text{for all } n \geq n_2$$

We use this inequality in (32) and obtain that

(33)
$$2\psi_+(t_n u_n^+) \le M_8 \text{ for all } n \ge n_2 \text{ (see (9))}.$$

Comparing (30) and (33) we have a contradiction.

So, we have proved that

$$\{u_n^+\}_{n\geq 1} \subseteq H^1(\Omega) \text{ is bounded}, \Rightarrow \{u_n\}_{n\geq 1} \subseteq H^1(\Omega) \text{ is bounded (see (13))}.$$

Hence we may assume that

(34) $u_n \xrightarrow{w} u$ in $H^1(\Omega)$ and $u_n \to u$ in $L^{\tau}(\Omega)$ and in $L^2(\partial \Omega)$.

In (12) we choose $h = u_n - u \in H^1(\Omega)$, pass to the limit as $n \to +\infty$ and use (34). Then

$$\begin{split} &\lim_{n \to +\infty} \langle A(u_n), u_n - u \rangle = 0, \\ \Rightarrow \quad \|\nabla u_n\|_2 \to \|\nabla u\|_2, \\ \Rightarrow \quad u_n \to u \text{ in } H^1(\Omega) \text{ by the Kadec-Klee property (see (34)).} \end{split}$$

This proves Claim 1.

<u>Claim 2</u>: u = 0 is a local minimizer of the functional ψ_+ .

Hypotheses H(i), (iv) imply that given $\varepsilon > 0$, we can find $c_3 = c_3(\varepsilon) > 0$ such that

(35)
$$F(z,x) \le \frac{1}{2}(\vartheta(z) + \varepsilon)x^2 + c_3|x|^r \text{ for a.a. } z \in \Omega, \text{ all } x \in \mathbb{R}.$$

Then for every $u \in H^1(\Omega)$ we have

$$\psi_{+}(u) = \frac{1}{2}\eta(u^{-}) + \frac{\mu}{2} \|u^{-}\|_{2}^{2} + \frac{1}{2}\eta(u^{+}) + \frac{\mu}{2} \|u^{+}\|_{2}^{2} - \int_{\Omega} G_{+}(z, u^{+})dz$$

$$\geq \frac{c_{0}}{2} \|u^{-}\|^{2} + \frac{1}{2}\eta(u^{+}) - \frac{1}{2}\int_{\Omega} \vartheta(z)(u^{+})^{2}dz - \frac{\varepsilon}{2} \|u^{+}\|^{2} - c_{4}\|u\|^{r}$$

for some $c_{4} > 0$ (see (3), (9) and (35))

$$\geq \frac{c_0}{2} \|u^-\|^2 + \frac{c_5 - \varepsilon}{2} \|u^+\|^2 - c_4 \|u\|^r$$
 for some $c_5 > 0$ (see D'Aguì-Marano-Papageorgiou [6], Lemma 2.2)

Choosing $\varepsilon \in (0, c_5)$ we infer that

(36)
$$\psi_+(u) \ge c_6 ||u||^2 - c_4 ||u||^r$$
 for some $c_6 > 0$, all $u \in H^1(\Omega)$.

Since r > 2, from (36) it follows that

u = 0 is a local minimizer of ψ_+ .

This proves Claim 2.

<u>Claim 3</u>: $K_{\psi_+} \setminus \{0\} \subseteq D_+$. Let $u \in K_{\psi_+}, u \neq 0$. Then we have

(37)
$$\langle A(u), h \rangle + \int_{\Omega} (\xi(z) + \mu) u h dz + \int_{\partial \Omega} \beta(z) u h d\sigma = \int_{\Omega} g_{+}(z, u) h dz$$
 for all $h \in H^{1}(\Omega)$.
In (37) we choose $h = -u^{-} \in H^{1}(\Omega)$. Then

$$\eta(u^{-}) + \mu \|u^{-}\|_{2}^{2} = 0 \text{ (see (9))}$$

$$\Rightarrow c_{0} \|u^{-}\|^{2} \leq 0 \text{ (see (3))},$$

$$\Rightarrow u \geq 0, u \neq 0.$$

Then using (9), we see that (37) becomes

$$\langle A(u), h \rangle + \int_{\Omega} \xi(z) u h dz + \int_{\partial \Omega} \beta(z) u h d\sigma = \int_{\Omega} f(z, u) h dz \quad \text{for all } h \in H^{1}(\Omega),$$

$$\Rightarrow \quad -\Delta u(z) + \xi(z) u(z) = f(z, u(z)) \quad \text{for a.a. } z \in \Omega,$$

(38)

$$-\Delta u(z) + \xi(z)u(z) = f(z, u(z)) \quad \text{for}$$
$$\frac{\partial u}{\partial n} + \beta(z)u = 0 \quad \text{on } \partial\Omega$$

10

(see Papageorgiou-Rădulescu [16]).

Hypotheses H(i), (iv) imply that

(39)
$$|f(z,x)| \le c_7(|x|+|x|^{r-1})$$
 for a.a. $z \in \Omega$, all $x \in \mathbb{R}$, some $c_7 > 0$.

Then from (38) we have

(40)
$$-\Delta u(z) = \left[\frac{f(z, u(z))}{u(z)} - \xi(z)\right] u(z) \quad \text{for a.a. } z \in \Omega.$$

Let $a_0(z) = \frac{f(z, u(z))}{u(z)} - \xi(z)$. We have $|a_0(z)| \le \frac{|f(z, u(z))|}{|u(z)|} + |\xi(z)|$ $\le c_7(1 + |u(z)|^{r-2}) + |\xi(z)|$ for a.a. $z \in \Omega$ (see (39)).

Since $u \in H^1(\Omega)$, using the Sobolev embedding theorem, we have

$$|u(\cdot)|^{r-2} \in L^{\frac{2^*}{r-2}}(\Omega).$$

By hypothesis $r < 2^*$ and so we have

$$\frac{N}{2} < \frac{2^*}{r-2}$$

Therefore

$$a_0 \in L^{\lambda}(\Omega)$$
 with $\lambda > \frac{N}{2}$ (see hypothesis $H(\xi)$).

Then from (40) and Lemma 5.1 of Wang [20] we have $u \in L^{\infty}(\Omega)$. So, using hypotheses H(i) and $H(\xi)$, we see that

$$z \to f(z, u(z)) - \xi(z)u(z)$$
 belongs in $L^s(\Omega), s > N$.

Invoking Lemma 5.2 of Wang [20] (the Calderon-Zygmund estimates) we infer that $u \in C_+ \setminus \{0\}$.

Hypotheses H(i), (iv) imply that if $\rho = ||u||_{\infty}$, then we can find $\tilde{\xi}_{\rho} > 0$ such that

(41)
$$f(z,x)x + \tilde{\xi}_{\rho}x^2 \ge 0 \quad \text{for a.a. } z \in \Omega, \text{ all } |x| \le \rho$$

From (38) and (41) it follows that

$$\Delta u(z) \leq (\|\xi^+\|_{\infty} + \xi_{\rho})u(z) \quad \text{for a.a. } z \in \Omega \text{ (see hypothesis } H(\xi)),$$

$$\Rightarrow \quad u \in D_+ \text{ (by the strong maximum principle).}$$

This proves Claim 3.

On account of Claim 3, we may assume that K_{ψ_+} is finite (otherwise we already have an infinity of distinct positive smooth solutions of problem (1) (see (9)) and so we are done). Claim 2 implies that we can find $\rho \in (0, 1)$ small such that

(42)
$$0 = \psi_+(0) < \inf[\psi_+(u) : ||u|| = \rho] = m_\rho^+$$

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29).

Also, hypothesis H(ii) implies that for every $u \in D_+$, we have

(43)
$$\psi_+(tu) \to -\infty \text{ as } t \to +\infty.$$

From (42), (43) and Claim 1, we see that we can apply Theorem 1 (the mountain pass theorem) and find $u_0 \in H^1(\Omega)$ such that

$$u_0 \in K_{\psi_+} \text{ and } m_{\rho}^+ \le \psi_+(u_0).$$

It follows that $u_0 \in D_+$ is a positive solution of problem (1) (see Claim 3, (42) and (9)).

For the negative solution we argue in a similar fashion. So, we introduce the Carathéodory function $g_{-}: \Omega \times \mathbb{R} \to \mathbb{R}$ defined by

$$g_{-}(z,x) = \begin{cases} f(z,x) + \mu x & \text{if } x < 0, \\ 0 & \text{if } 0 \le x. \end{cases}$$

We set $G_{-}(z,x) = \int_{0}^{x} g_{-}(z,s) ds$ and consider the C^{1} -functional $\psi_{-} : H^{1}(\Omega) \to \mathbb{R}$ defined by

$$\psi_{-}(u) = \frac{1}{2}\eta(u) + \frac{\mu}{2} ||u||_{2}^{2} - \int_{\Omega} G_{-}(z, u) dz$$
 for all $u \in H^{1}(\Omega)$.

Using ψ_{-} and reasoning as we did for ψ_{+} , we produce a negative solution $v_{0} \in -D_{+}$.

To produce a third nontrivial smooth solution, we will use tools from Morse theory (critical groups). The fact that ψ_+ are not C^2 -functionals complicates things.

Proposition 2. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then $C_k(\psi_{\pm}, \infty) = 0$ for all $k \in N_0$.

Proof. We will do the proof for the functional ψ_+ , the proof for ψ_- being similar. Let $\partial B_1^+ = \{u \in H^1(\Omega) : ||u|| = 1, u^+ \neq 0\}$. We consider the deformation $h_+ : [0,1] \times \partial B_1^+ \to \partial B_1^+$ defined by

$$h_{+}(t,u) = \frac{(1-t)u + t\widehat{u}_{1}}{\|(1-t)u + t\widehat{u}_{1}\|} \quad \text{for all } (t,u) \in [0,1] \times \partial B_{1}^{+}.$$

We have

$$h_+(0,\cdot) = \mathrm{id}\big|_{\partial B_1^+}$$
 and $h_+(1,\cdot) = \frac{\widehat{u}_1}{\|\widehat{u}_1\|} \in \partial B_1^+$ (recall that $\widehat{u}_1 \in D_+$).

So, it follows that

(44) ∂B_1^+ is contractible in itself.

Hypotheses H(i), (ii) imply that given any k > 0, we can find $c_8 = c_8(k) > 0$ such that

(45)
$$F(z,x) \ge \frac{k}{2}x^2 - c_8 \quad \text{for a.a. } z \in \Omega, \text{ all } x \in \mathbb{R}.$$

Then for $u \in \partial B_1^+$ and t > 0, we have

$$\psi_{+}(tu) = \frac{t^{2}}{2}\eta(u) + \frac{\mu}{2}t^{2}||u||_{2}^{2} - \int_{\Omega}G_{+}(z,tu)dz$$

$$\leq \frac{t^{2}}{2}\eta(u) + \frac{\mu}{2}t^{2}||u||_{2}^{2} - \frac{k}{2}t^{2}||u^{+}||_{2}^{2} - \frac{\mu}{2}t^{2}||u^{+}||_{2}^{2} + c_{8}|\Omega|_{N} \text{ (see (9) and (45))}$$

$$\leq \frac{t^{2}}{2}[\eta(u^{-}) + \mu||u^{-}||_{2}^{2}] + \frac{t^{2}}{2}[\eta(u^{+}) - k||u^{+}||_{2}^{2} + c_{8}|\Omega|_{N}$$

$$\leq \frac{t^2}{2}c_9 + \frac{t^2}{2}[c_{10} - k||u^+||_2^2] + c_8|\Omega|_N \text{ for some } c_9 > 0, \ c_{10} > 0$$
(see hypotheses $H(\xi), \ H(\beta)$ and recall that $||u|| = 1$)
$$= \frac{t^2}{2}[c_{11} - k||u^+||_2^2] + c_8|\Omega|_N \text{ with } c_{11} = c_9 + c_{10} > 0.$$

Recall that k > 0 is arbitrary. We choose $k > \frac{c_{11}}{\|u^+\|_2^2}$. It follows that

(46)
$$\psi_+(tu) \to -\infty \text{ as } t \to +\infty \text{ for all } u \in \partial B_1^+.$$

For $u \in \partial B_1^+$ and t > 0, we have

$$\begin{aligned} \frac{d}{dt}\psi_{+}(tu) &= \langle \psi'_{+}(tu), u \rangle \text{ (by the chain rule)} \\ &= \frac{1}{t} \langle \psi'_{+}(tu), tu \rangle \\ &= \frac{1}{t} \left[\langle A(tu), tu \rangle + \int_{\Omega} (\xi(z) + \mu)(tu)^{2} dz + \int_{\partial \Omega} \beta(z)(tu)^{2} d\sigma - \int_{\Omega} g_{+}(z, tu)(tu) dz \right] \\ &= \frac{1}{t} \left[\eta(tu) + \mu \|tu\|_{2}^{2} - \int_{\Omega} g_{+}(z, tu)(tu) dz \right] \\ &\leq \frac{1}{t} \left[\eta(tu) + \mu \|tu\|_{2}^{2} - \int_{\Omega} (2F(z, tu^{+}) + \mu(tu^{+})) dz + \|d\|_{1} \right] \\ &\text{ (from hypothesis } H(iii) \text{ we have } 0 \leq e(z, x) + d(z) \text{ for a.a. } z \in \Omega, \text{ all } x \in \mathbb{R}) \end{aligned}$$

$$(47) \leq \frac{1}{t} [2\psi_{+}(tu) + \|d\|_{1}]. \end{aligned}$$

From (46) and (47) we see that

(48)
$$\psi_+(tu) < -\frac{\|d\|_1}{2} \text{ and } \frac{d}{dt}\psi_+(tu) < 0 \text{ for all } t > 0 \text{ big.}$$

We choose

(49)
$$m < \min\left\{-\frac{\|d\|_1}{2}, \inf_{\overline{B}_1}\psi_+\right\}.$$

From (48) and the implicit function theorem, we know that there exists $\zeta \in C(\partial B_1^+)$ with $\zeta \geq 1$ (see (49)) such that

(50)
$$\psi_{+}(tu) \begin{cases} > m & \text{if } t \in [0, \zeta(u)), \\ = m & \text{if } t = \zeta(u), \\ < m & \text{if } \zeta(u) < t. \end{cases}$$

From (49) and (50) it follows that

(51)
$$\psi_+^m = \{ tu : u \in \partial B_1^+, t \ge \zeta(u) \}.$$

We set

$$E_{+} = \{ tu : u \in \partial B_{1}^{+}, t \ge 1 \}.$$

Evidently we have

$$\psi_+^m \subseteq E_+$$
(see (51)).

We consider the deformation $\tilde{h}_+: [0,1] \times E_+ \to E_+$ defined by

(52)
$$\widetilde{h}_{+}(s,tu) = \begin{cases} (1-s)tu + s\zeta(u)u & \text{if } t \in [1,\zeta(u)), \\ tu & \text{if } \zeta(u) \le t, \end{cases}$$

(recall that $\zeta \geq 1$). We have

$$\begin{aligned} \widetilde{h}_{+}(s,\cdot)\big|_{\psi_{+}^{m}} &= \mathrm{id}\big|_{\psi_{+}^{m}} \text{ for all } s \in [0,1] \text{ (see (51), (52)),} \\ \widetilde{h}_{+}(1,E_{+}) &\subseteq \psi_{+}^{m} \text{ (see (51)), (52)).} \end{aligned}$$

This means that

 ψ^m_+ is a strong deformation retract of E_+

(53)
$$\Rightarrow H_k(H^1(\Omega), \psi_+^m) = H_k(H^1(\Omega), E_+) \text{ for all } k \in \mathbb{N}_0$$

(see Motreanu-Motreanu-Papageorgiou [14] (p. 143)).

Also, we consider the deformation $\overline{h}_+: [0,1] \times E_+ \to E_+$ defined by

$$\overline{h}_{+}(s,tu) = (1-s)tu + s\frac{tu}{\|tu\|}$$
 for all $s \in [0,1]$, all $tu \in E_{+}$.

We have

$$\begin{aligned} \overline{h}_+(1,E_+) &\subseteq \partial B_1^+, \\ \overline{h}_+(1,\cdot)\big|_{\partial B_1^+} &= \mathrm{id}\big|_{\partial B_1^+}. \end{aligned}$$

So, E_+ is deformable into ∂B_1^+ and the latter is a retract of E_+ . So, from Theorem 6.5, p. 325 of Dugundji [7], we have

$$\partial B_1^+ \text{ is a deformation retract of } E_+$$

$$\Rightarrow \quad H_k(H^1(\Omega), \partial B_1^+) = H_k(H^1(\Omega), E_+) \quad \text{for all } k \in \mathbb{N}_0$$

(see Motreanu-Motreanu-Papageorgiou [14] (p. 143)),

 $\Rightarrow H_k(H^1(\Omega), \partial B_1^+) = H_k(H^1(\Omega), \psi_+^m) \text{ for all } k \in \mathbb{N}_0 \text{ (see (53))}.$ (54)

From (44) and Motreanu-Motreanu-Papageorgiou [14] (p. 147), we have

(55)
$$H_k(H^1(\Omega), \partial B_1^+) = 0 \quad \text{for all } k \in \mathbb{N}_0,$$
$$\Rightarrow \quad H_k(H^1(\Omega), \psi_+^m) = 0 \quad \text{for all } k \in \mathbb{N}_0 \text{ (see (54))}.$$

. .

Choosing m < 0 even more negative if necessary (see (49)), from (55) we infer that

$$C_k(\psi_+, \infty) = 0$$
 for all $k \in \mathbb{N}_0$ (recall K_{ψ_+} is finite).

In a similar fashion, we show that

$$C_k(\psi_-,\infty) = 0$$
 for all $k \in \mathbb{N}_0$.

Let $\varphi: H^1(\Omega) \to \mathbb{R}$ be the energy (Euler) functional for problem (1) defined by

$$\varphi(u) = \frac{1}{2}\eta(u) - \int_{\Omega} F(z, u)dz \quad \text{for all } u \in H^{1}(\Omega).$$

Evidently $\varphi \in C^1(H^1(\Omega))$.

Proposition 3. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then the functional φ satisfies the *C*-condition.

Proof. Consider a sequence $\{u_n\}_{n\geq 1} \subseteq H^1(\Omega)$ such that

(56)
$$|\varphi(u_n)| \le M_9 \text{ for some } M_9 > 0, \text{ all } n \in \mathbb{N},$$

(57)
$$(1 + ||u_n||)\varphi'(u_n) \to 0 \quad \text{in } H^1(\Omega)^* \text{ as } n \to +\infty.$$

From (57) we have

(58)
$$\left| \langle A(u_n), h \rangle + \int_{\Omega} \xi(z) u_n h dz + \int_{\partial \Omega} \beta(z) u_n h d\sigma - \int_{\Omega} f(z, u_n) h dz \right| \le \frac{\varepsilon_n \|h\|}{1 + \|u_n\|}$$

for all $h \in H^1(\Omega)$, with $\varepsilon_n \to 0^+$.

In (58) we choose $h = u_n \in H^1(\Omega)$. Then

(59)
$$-\eta(u_n) + \int_{\Omega} f(z, u_n) u_n dz \le \varepsilon_n \quad \text{for all } n \in \mathbb{N}$$

Also, from (56) we have

(60)
$$\eta(u_n) - \int_{\Omega} 2F(z, u_n) dz \le 2M_9 \quad \text{for all } n \in \mathbb{N}$$

We add (59) and (60) and obtain that

(61)
$$\int_{\Omega} e(z, u_n) dz \le M_{10} \quad \text{for some } M_{10} > 0, \text{ all } n \in \mathbb{N}$$

As in the proof of Proposition 1, using (61) we will show the boundedness of $\{u_n\}_{n\geq 1} \subseteq H^1(\Omega)$. We argue indirectly. So, suppose that

(62)
$$||u_n|| \to +\infty.$$

Let $y_n = \frac{u_n}{\|u_n\|}$, $n \in \mathbb{N}$. We have $\|y_n\| = 1$ for all $n \in \mathbb{N}$. So, we may assume that

(63)
$$y_n \xrightarrow{w} y$$
 in $H^1(\Omega)$ and $y_n \to y$ in $L^{\tau}(\Omega)$ and in $L^2(\partial\Omega)$
(recall that $\tau = \max\left\{\frac{2s}{s-1}, r\right\}$).

If $y \neq 0$, then as in the proof of Proposition 1, we reach a contradiction. If y = 0, then for $k \geq 1$ we set $v_n = (2k)^{1/2} y_n$, $n \in \mathbb{N}$. We have $y \rightarrow 0$ in $L^r(\Omega)$ (see (63))

(64)
$$v_n \to 0 \text{ in } L'(\Omega) \text{ (see (63))},$$

$$\Rightarrow \quad \int_{\Omega} F(z, v_n) dz \to 0 \quad \text{(see hypothesis } H(i)\text{)}.$$

From (62) we see that we can find $n_0 \in \mathbb{N}$ such that

(65)
$$(2k)^{1/2} \frac{1}{\|u_n\|} \le 1 \text{ for all } n \ge n_0.$$

Let $t_n \in [0, 1]$ be such that

(66)
$$\varphi(t_n u_n) = \max[\varphi(t u_n) : 0 \le t \le 1], \text{ for all } n \in \mathbb{N}.$$

Then (65) and (66) imply that

$$\varphi(t_n u_n) \ge \varphi(v_n)$$

$$= k\eta(y_n) - \int_{\Omega} F(z, v_n) dz$$

$$= k[\eta(y_n) + \mu ||y_n||_2^2] - \int_{\Omega} F(z, v_n) dz - \mu k ||y_n||_2^2$$

$$\geq kc_0 - \int_{\Omega} F(z, v_n) dz - k\mu ||y_n||_2^2$$

(see (3) and recall that $||y_n|| = 1, n \in \mathbb{N}$)

$$\geq k(c_0 - \mu ||y_n||_2^2) - k \left| \int_{\Omega} F(z, v_n) dz \right| \quad \text{for all } n \geq n_0$$

(67)

$$(67)$$

From (63) (recall that y = 0) and (64), we see that we can find $n_1 \in \mathbb{N}$, $n_1 \ge n_0$ such that

(68)
$$||y_n||_2^2 < \frac{c_0}{3\mu} \text{ and } \left| \int_{\Omega} F(z, v_n) dz \right| < \frac{c_0}{3\mu} \text{ for all } n \ge n_1.$$

From (67) and (68) it follows that

$$\varphi(t_n u_n) \ge k \frac{c_0}{3\mu} \quad \text{for all } n \ge n_1.$$

But $k \geq 1$ is arbitrary. So, we infer that

(69)
$$\varphi(t_n u_n) \to -\infty \text{ as } n \to +\infty$$

Using (69) and reasoning as in the proof of Proposition 1 (see Claim 1, the part of the proof after (30)), we reach again a contradiction. So, we conclude that φ satisfies the C-condition.

We assume that K_{φ} is finite. Otherwise, we already have an infinity of distinct (smooth by the regularity theory of Wang [20]) solutions of problem (1) and so we are done. The finiteness of K_{φ} together with Proposition 3 permit the computation of the critical groups of φ at infinity.

Proposition 4. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then $C_k(\varphi, \infty) = 0$ for all $k \in N_0$.

Proof. As in the proof of Proposition 2, using (45) we show that

(70)
$$\varphi(tu) \to -\infty \text{ as } t \to +\infty \text{ for all } u \in \partial B_1 = \{v \in H^1(\Omega) : ||v|| = 1\}$$

For $u \in \partial B_1$ and t > 0, we have

(71)

$$\frac{d}{dt}\varphi(tu) = \langle \varphi'(tu), u \rangle \text{ (by the chain rule)} \\
= \frac{1}{t} \langle \varphi'(tu), tu \rangle \\
= \frac{1}{t} \left[\eta(tu) - \int_{\Omega} f(z, tu)(tu) dz \right] \\
\leq \frac{1}{t} \left[\eta(tu) - \int_{\Omega} 2F(z, tu) dz + ||d||_{1} \right] \text{ (see hypothesis } H(iii)) \\
= \frac{1}{t} [2\varphi(tu) + ||d||_{1}].$$

From (70) and (71) it follows that

$$\frac{d}{dt}\varphi(tu) < 0$$
 for all $t > 0$ big.

As in the proof of Proposition 2, invoking the implicit function theorem we can find $\gamma \in C(\partial B_1)$ such that

$$\gamma > 0$$
 and $\varphi(\gamma(u)u) = \rho_0 < -\frac{\|d\|_1}{2}$

We extend $\gamma(\cdot)$ on all of $H^1(\Omega) \setminus \{0\}$ by setting

$$\widehat{\gamma}(u) = \frac{1}{\|u\|} \gamma\left(\frac{u}{\|u\|}\right) \text{ for all } u \in H^1(\Omega) \setminus \{0\}.$$

Evidently $\widehat{\gamma} \in C(H^1(\Omega) \setminus \{0\})$ and $\varphi(\widehat{\gamma}(u)u) = \rho_0$. Moreover, we have

(72)
$$\varphi(u) = \rho_0 \quad \Rightarrow \quad \widehat{\gamma}(u) = 1$$

So, if we set

(73)
$$\gamma_0(u) = \begin{cases} 1 & \text{if } \varphi(u) \le \rho_0, \\ \widehat{\gamma}(u) & \text{if } \rho_0 < \varphi(u), \end{cases}$$

then we infer that

 $\gamma_0 \in C(H^1(\Omega) \setminus \{0\})$ (see (72)).

We consider the deformation $h: [0,1] \times (H^1(\Omega) \setminus \{0\}) \to H^1(\Omega) \setminus \{0\}$ defined by

 $h(t, u) = (1 - t)u + t\gamma_0(u)u$ for all $(t, u) \in [0, 1] \times (H^1(\Omega) \setminus \{0\}).$

We have

$$\begin{split} h(0, u) &= u; \\ h(1, u) &= \gamma_0(u)u \in \varphi^{\rho_0} \text{ (see (72), (73))}; \\ h(t, \cdot)\big|_{\varphi^{\rho_0}} &= \mathrm{id}\big|_{\varphi^{\rho_0}} \text{ (see (73))}. \end{split}$$

These properties imply that

(74) φ^{ρ_0} is a strong deformation retract of $H^1(\Omega) \setminus \{0\}$.

Let $\widehat{r}: H^1(\Omega) \setminus \{0\} \to \partial B_1$ be the radial retraction map defined by

$$\widehat{r}(u) = \frac{u}{\|u\|}$$
 for all $u \in H^1(\Omega) \setminus \{0\}.$

Let $h_0: [0,1] \times (H^1(\Omega) \setminus \{0\}) \to H^1(\Omega) \setminus \{0\}$ be the deformation defined by $h_0(t,u) = (1-t)u + t\hat{r}(u)$ for all $(t,u) \in [0,1] \times (H^1(\Omega) \setminus \{0\}).$

This deformation shows that

(75)
$$H^1(\Omega) \setminus \{0\}$$
 is deformable into ∂B_1

Moreover, the map $\widehat{r}(\cdot)$ shows that

(76)
$$\partial B_1$$
 is a retract of $H^1(\Omega) \setminus \{0\}$

From (75), (76) and Theorem 6.5, p. 325 of Dugundji [7], we infer that

(77) ∂B_1 is a deformation retract of $H^1(\Omega) \setminus \{0\}$.

From (74) and (77) it follows that

 φ^{ρ_0} and ∂B_1 are homotopy equivalent,

(78)
$$\Rightarrow H_k(H^1(\Omega), \varphi^{\rho_0}) = H_k(H^1(\Omega), \partial B_1) \text{ for all } k \in \mathbb{N}_0$$

(see Motreanu-Motreanu-Papageorgiou [14] (p. 143)).

The space $H^1(\Omega)$ is infinite dimensional and so it follows that ∂B_1 is contractible (see Gasiński-Papageorgiou [10], Problems 4.154, 4.159). So, we have

 $H_k(H^1(\Omega), \partial B_1) = 0$ for all $k \in \mathbb{N}_0$,

(see Motreanu-Motreanu-Papageorgiou [14] (p. 147)),

$$\Rightarrow H_k(H^1(\Omega), \varphi^{\rho_0}) = 0 \quad \text{for all } k \in \mathbb{N}_0 \text{ (see (78))}.$$

Choosing $\rho_0 < -\frac{\|d\|_1}{2}$ even more negative if necessary, we conclude that

 $C_k(\varphi, \infty) = 0$ for all $k \in \mathbb{N}_0$.

From the proof of Proposition 1 we know that $u_0 \in D_+$, the positive solution of problem (1), is a critical point of ψ_+ of mountain pass type. So, we have

(79)
$$C_1(\psi_+, u_0) \neq 0$$

(see Motreanu-Motreanu-Papageorgiou [14] (p. 168)). From (9) it is clear that

$$\psi_+\Big|_{C_+} = \varphi\Big|_{C_+}.$$

Since $u_0 \in D_+$ and $C^1(\overline{\Omega})$ is dense in $H^1(\Omega)$, from Chang [5] (p. 14), we infer that

(80)
$$C_k(\varphi, u_0) = C_k(\psi_+, u_0) \text{ for all } k \in \mathbb{N}_0,$$
$$\Rightarrow \quad C_1(\varphi, u_0) \neq 0 \text{ (see (79))}.$$

Because φ is not a C²-functional (recall that $f(z, \cdot)$ is only continuous), in general we can not say that

 $C_k(\varphi, u_0) = \delta_{k,1} \mathbb{Z}$ for all $k \in \mathbb{N}_0$.

Similarly for the negative solution $v_0 \in -D_+$ (see Proposition 1).

The next proposition, shows that although φ lacks smoothness, we can still have a precise computation of the critical groups of φ at $u_0 \in D_+$ and at $v_0 \in -D_+$.

Proposition 5. If hypotheses $H(\xi)$, $H(\beta)$, H hold and $u_0 \in D_+$, $v_0 \in -D_+$, from Proposition 1, are the only nontrivial constant sign solutions of problem (1), then $C_k(\varphi, u_0) = C_k(\varphi, v_0) = \delta_{k,1}\mathbb{Z}$ for all $k \in \mathbb{N}_0$.

Proof. Recall that

$$K_{\psi_+} \subseteq D_+ \cup \{0\}$$

(see the proof of Proposition 1, Claim 3). We know that

$$\left. \varphi' \right|_{C_+} = \psi'_+ \Big|_{C_+} \text{ (see (9)).}$$

The critical set K_{φ} is the set of positive solutions of (1) and by hypothesis $u_0 \in D_+$ is the only nontrivial positive solution of problem (1). So, we have

(81)
$$K_{\psi_+} = \{0, u_0\}.$$

We choose $\lambda < 0 < s < \psi_+(u_0) = \varphi(u_0)$ (see the proof of Proposition 1). We consider the following triple of sets

$$\psi_+^{\lambda} \subseteq \psi_+^s \subseteq H^1(\Omega).$$

For this triple of sets, we consider the corresponding long exact sequence of singular homology groups (for notational simplicity, we set $H = H^1(\Omega)$).

(82)
$$\cdots \rightarrow H_k(H, \psi_+^{\lambda}) \xrightarrow{i_*} H_k(H, \psi_+^s) \xrightarrow{\widehat{\partial}_*} H_{k-1}(\psi_+^s, \psi_+^{\lambda}) \rightarrow \cdots$$

(see Motreanu-Motreanu-Papageorgiou [14] (pp. 143-144)). In (82) i_* is the homomorphism induced by the inclusion

$$(H, \psi_+^{\lambda}) \hookrightarrow^i (H, \psi_+^s),$$

while $\hat{\partial}_*$ is the composed boundary homomorphism (see Motreanu-Motreanu-Papageorgiou [14] (p. 144)).

Since $\lambda < 0 = \psi_+(0)$, from (81) it follows that

(83)
$$H_k(H, \psi_+^{\lambda}) = C_k(\psi_+, \infty) = 0 \quad \text{for all } k \in \mathbb{N}_0 \text{ (see Proposition 2)}$$

Also, since $s \in (0, \psi_+(u_0))$, from (81) and Motreanu-Motreanu-Papageorgiou [14] (p. 157), we have

(84)
$$H_{k-1}(\psi_{+}^{s},\psi_{+}^{\lambda}) = C_{k-1}(\psi_{+},0) = \delta_{k-1,0}\mathbb{Z} = \delta_{k,1}\mathbb{Z} \text{ for all } k \in \mathbb{N}_{0}$$

(see the proof of Proposition 2, Claim 2).

Similarly, we have

(85)
$$H_k(H, \psi^s_+) = C_k(\psi_+, u_0) \quad \text{for all } k \in \mathbb{N}_0$$

Taking into account (83), (84), (85), we see that in (82) only the tail (that is, k = 1) of the long exact sequence, is nontrivial.

From the rank theorem, we have

$$\operatorname{rank} C_1(\psi_+, u_0) = \operatorname{rank} \ker \widehat{\partial}_* + \operatorname{rank} \operatorname{im} \widehat{\partial}_* (\operatorname{see} (85))$$

$$= \operatorname{rank} \operatorname{im} i_* + \operatorname{rank} \operatorname{im} \widehat{\partial}_* (\operatorname{because} (82) \text{ is exact})$$

$$= \operatorname{rank} \operatorname{im} \widehat{\partial}_* (\operatorname{see} (83))$$

$$\leq 1 (\operatorname{see} (84))$$

$$\Rightarrow C_k(\psi_+, u_0) = \delta_{k,1}\mathbb{Z} \quad \text{for all } k \in \mathbb{N}_0$$

$$(\operatorname{see} (79) \text{ and recall that only the tail of } (82) \text{ is nontrivial})$$

$$\Rightarrow C_k(\varphi, u_0) = \delta_{k,1}\mathbb{Z} \quad \text{for all } k \in \mathbb{N}_0 (\operatorname{see} (80)).$$

Similarly we show that

$$C_k(\varphi, v_0) = \delta_{k,1}\mathbb{Z}$$
 for all $k \in \mathbb{N}_0$

Now we are ready for the multiplicity theorem (three solutions theorem).

Theorem 2. If hypotheses $H(\xi)$, $H(\beta)$, H hold, then problem (1) has at least three nontrivial smooth solutions $u_0 \in D_+$, $v_0 \in -D_+$, $y_0 \in C^1(\overline{\Omega}) \setminus \{0\}$.

		_	

Proof. From Proposition 1, we already have two nontrivial constant sign smooth solutions

$$u_0 \in D_+$$
 and $v_0 \in -D_+$.

We assume that

(86)
$$K_{\varphi} = \{0, u_0, v_0\}$$

Otherwise we already have a third nontrivial solution which is in $C^1(\overline{\Omega})$ (by the regularity theory of Wang [20]). From (86) and Proposition 5, we have

(87)
$$C_k(\varphi, u_0) = C_k(\varphi, v_0) = \delta_{k,1} \mathbb{Z} \quad \text{for all } k \in \mathbb{N}_0.$$

As in the proof of Proposition 1, Claim 2, we show that

u = 0 is a local minimizer of φ ,

(88)
$$\Rightarrow C_k(\varphi, 0) = \delta_{k,0}\mathbb{Z} \text{ for all } k \in \mathbb{N}_0$$

From Proposition 4 we have

(89)
$$C_k(\varphi, \infty) = 0$$
 for all $k \in \mathbb{N}_0$.

From (86), (87), (88), (89) and the Morse relation with t = -1, we have

$$2(-1)^1 + (-1)^0 = 0$$

a contradiction. So, we can find $y_0 \in H^1(\Omega)$ such that

$$y_0 \in K_{\varphi} \text{ and } y_0 \notin \{0, u_0, v_0\}$$

This is the third nontrivial solution of problem (1) and the regularity theory of Wang [20] implies that $y_0 \in C^1(\overline{\Omega}) \setminus \{0\}$.

References

- S. Aizicovici, N.S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc., 196 (2008), 70 pp.
- [2] S. Aizicovici, N.S. Papageorgiou and V. Staicu, Multiple solutions for superlinear p-Laplacian Neumann problems, Osaka J. Math., 49 (2012), 699–740.
- [3] S. Aizicovici, N.S. Papageorgiou and V. Staicu, On p-superlinear equations with a nonhomogeneous differential operator, Nonlin. Diff. Equ. Appl. (NODEA), 14 (2013), 151–175.
- [4] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Anal., 14 (1973), 349–381.
- [5] K.-C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Boston (1993).
- [6] G. D'Aguì, S.A. Marano and N.S. Papageorgiou, Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction, J. Math. Anal. Appl., 433 (2016), 1821–1845.
- [7] J. Dugundji, *Topology*, Allyn and Bacon Inc., Boston (1966).
- [8] F. Fang and S. Liu, Nontrivial solutions of superlinear p-Laplacian equations, J. Math. Anal. Appl., 351 (2009), 138–146.
- [9] L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis, Ser. Math. Anal. Appl. 9, Chapman and Hall/CRC Press, Boca Raton, (2006).
- [10] L. Gasiński and N.S. Papageorgiou, Exercises in Analysis. Part II: Nonlinear Analysis, Springer, New York (2016).
- [11] G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlin. Anal., 72 (2010), 4602–4613.
- S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788–795.

20

- [13] O. Miyagaki and M.A.S. Souto, Superlinear problems without the Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628–3638.
- [14] D. Motreanu, V. Motreanu and N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York (2014).
- [15] N.S. Papageorgiou and F. Papalini, Seven solutions with sign information for sublinear equations with indefinite and unbounded potential and no symmetries, Israel J. Math. 201 (2014), 761–796.
- [16] N.S. Papageorgiou and V.D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449–2479.
- [17] N.S. Papageorgiou and V.D. Rădulescu, Robin problems with indefinite, unbounded potential and reaction of arbitrary growth, Rev. Mat. Complut., 29 (2016), 91–126.
- [18] N.S. Papageorgiou and G. Smyrlis, On a class of parametric Neumann problems with indefinite and unbounded potential, Forum Math., 27 (2015), 1743–1772.
- [19] M. Sun, Multiple solutions of a superlinear p-Laplacian equation without AR-condition, Appl. Anal., 89 (2010), 325–336.
- [20] X.-J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93 (1991), 283–310.
- [21] Z.-Q. Wang, On superlinear elliptic equation, AIHP Anal. Non Linéaire 8 (1991), 43–58.

(N. Papageorgiou) DEPARTMENT OF MATHEMATICS, NATIONAL TECHNICAL UNIVERSITY, ZO-GRAFOU CAMPUS, 15780, ATHENS, GREECE

E-mail address: npapg@math.ntua.gr

(C. Vetro) DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF PALERMO, VIA ARCHIRAFI 34, 90123, PALERMO, ITALY

E-mail address: calogero.vetro@unipa.it

(F. Vetro) Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

E-mail address: francescavetro@tdtu.edu.vn