We introduce the notion of variational measure with respect to a derivation basis in a topological measure space and consider a Kurzweil-Henstock-type integral related to this basis. We prove a version of Hake's theorem in terms of a variational measure.
Skvortsov V., & Tulone F. (2021). A version of Hake's theorem for Kurzweil-Henstock integral in terms of variational measure. GEORGIAN MATHEMATICAL JOURNAL, 28(3), 471-476 [10.1515/gmj-2019-2074].
Data di pubblicazione: | 2021 | |
Titolo: | A version of Hake's theorem for Kurzweil-Henstock integral in terms of variational measure | |
Autori: | TULONE, Francesco (Corresponding) | |
Citazione: | Skvortsov V., & Tulone F. (2021). A version of Hake's theorem for Kurzweil-Henstock integral in terms of variational measure. GEORGIAN MATHEMATICAL JOURNAL, 28(3), 471-476 [10.1515/gmj-2019-2074]. | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1515/gmj-2019-2074 | |
Abstract: | We introduce the notion of variational measure with respect to a derivation basis in a topological measure space and consider a Kurzweil-Henstock-type integral related to this basis. We prove a version of Hake's theorem in terms of a variational measure. | |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
GMJ online A version of Hakes theorem for KurzweilHenstock integral in terms of variational measure.pdf | Versione Editoriale | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.