We introduce the notion of variational measure with respect to a derivation basis in a topological measure space and consider a Kurzweil-Henstock-type integral related to this basis. We prove a version of Hake's theorem in terms of a variational measure.
Skvortsov V., Tulone F. (2021). A version of Hake's theorem for Kurzweil-Henstock integral in terms of variational measure. GEORGIAN MATHEMATICAL JOURNAL, 28(3), 471-476 [10.1515/gmj-2019-2074].
A version of Hake's theorem for Kurzweil-Henstock integral in terms of variational measure
Tulone F.
2021-01-01
Abstract
We introduce the notion of variational measure with respect to a derivation basis in a topological measure space and consider a Kurzweil-Henstock-type integral related to this basis. We prove a version of Hake's theorem in terms of a variational measure.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
2021_A_version_of_Hakes_theorem_variational_measure.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
675.85 kB
Formato
Adobe PDF
|
675.85 kB | Adobe PDF | Visualizza/Apri |
|
10.1515_gmj-2019-2074.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
595.39 kB
Formato
Adobe PDF
|
595.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


