We consider a parametric nonlinear Robin problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential. The reaction term is (p- 1) -superlinear but need not satisfy the usual Ambrosetti–Rabinowitz condition. We look for positive solutions and prove a bifurcation-type result for the set of positive solutions as the parameter λ> 0 varies. Also we prove the existence of a minimal positive solution uλ∗ and determine the monotonicity and continuity properties of the map λ→uλ∗.

Papageorgiou N.S., Vetro C., Vetro F. (2020). Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A, MATEMÁTICAS, 114(1), 1-29 [10.1007/s13398-019-00779-1].

Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems

Vetro C.;
2020-01-01

Abstract

We consider a parametric nonlinear Robin problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential. The reaction term is (p- 1) -superlinear but need not satisfy the usual Ambrosetti–Rabinowitz condition. We look for positive solutions and prove a bifurcation-type result for the set of positive solutions as the parameter λ> 0 varies. Also we prove the existence of a minimal positive solution uλ∗ and determine the monotonicity and continuity properties of the map λ→uλ∗.
2020
Papageorgiou N.S., Vetro C., Vetro F. (2020). Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A, MATEMÁTICAS, 114(1), 1-29 [10.1007/s13398-019-00779-1].
File in questo prodotto:
File Dimensione Formato  
Papageorgiou2020_Article_ParameterDependenceForThePosit.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 397.48 kB
Formato Adobe PDF
397.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
10447_400670-post-print.pdf

accesso aperto

Tipologia: Post-print
Dimensione 400.49 kB
Formato Adobe PDF
400.49 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/400670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 0
social impact