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Abstract. We consider a parametric nonlinear Robin problem driven by a nonlinear
nonhomogeneous differential operator plus an indefinite potential. The reaction term
is (p− 1)-superlinear but need not satisfy the usual Ambrosetti-Rabinowitz condition.
We look for positive solutions and prove a bifurcation-type result for the set of positive
solutions as the parameter λ > 0 varies. Also we prove the existence of a minimal
positive solution u∗λ and determine the monotonicity and continuity properties of the
map λ→ u∗λ.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we study
the following nonlinear parametric Robin problem
(Pλ){
−div a(z,∇u(z)) + ξ(z)u(z)p−1 = fλ(z, u(z)) in Ω,

∂u
∂na

+ β(z)up−1 = 0 on ∂Ω, u ≥ 0, 1 < p <∞, λ > 0.

In this problem a : Ω×RN → RN is a continuous map with y → a(z, y) monotone (hence
maximal monotone too). The map a(z, ·) satisfies certain other regularity and growth
conditions listed in hypotheses H(a) below. These hypotheses are general enough to
incorporate in our framework many differential operators of interest such as the p-
Laplacian and the (p, q)-Laplacian (sum of a p-Laplacian and of a q-Laplacian). The
potential function ξ(·) is sign-changing. In the reaction term fλ(z, x), λ > 0 is a
parameter and (z, x, λ)→ fλ(z, x) is Carathéodory, that is, for all x ∈ R and all λ > 0,
z → fλ(z, x) is measurable, while for a.a. z ∈ Ω, (x, λ) → fλ(z, x) is continuous. We
assume that fλ(z, ·) exhibits (p−1)-superlinear growth near +∞ but without satisfying
the usual in such cases Ambrosetti-Rabinowitz condition (the AR-condition for short).
On the other hand near zero, fλ(z, ·) has a concave term (that is, a term which is
(p−1)-sublinear as x→ 0+). So, we have a “concave-convex” problem, but without the
two nonlinearities being decoupled and global. In the boundary condition, ∂u

∂na
denotes

the conormal derivative of u, defined by extension of the map

C1(Ω) 3 u→ (a(z,∇u), n)RN ,

with n(·) being the outward unit normal on ∂Ω. The boundary coefficient β(·) satisfies
β(z) ≥ 0 for all z ∈ ∂Ω.

Our aim is to study the nonexistence, existence and multiplicity of the positive solu-
tions as the parameter λ > 0 varies. In the past such studies were conducted primarily
in the context of Dirichlet problems driven by the Laplacian or p-Laplacian. We refer to
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the works of Ambrosetti-Brezis-Cerami [3], Garćıa Azorero-Peral Alonso-Manfredi [9],
Guo-Zhang [13] who deal with equations in which the potential function ξ ≡ 0 and the
reaction term has the special form

fλ(x) = λxq−1 + xr−1 for all x ≥ 0 with 1 < q < p < r < p∗.

Marano-Papageorgiou [18] extended the aforementioned works to nonlinear equations
driven by the Dirichlet p-Laplacian and a reaction term of the form

fλ(z, x) = λg(z, x) + h(z, x)

with g(z, x) a (p− 1)-sublinear Carathéodory function and h(z, x) a (p− 1)-superlinear
Carathéodory function. The work of Marano-Papageorgiou [18] was extended by Papa-
georgiou-Rǎdulescu-Repovš [25] to semilinear Robin problems driven by the Laplacian
plus an indefinite potential term and by Fragnelli-Mugnai-Papageorgiou [8] to nonlinear
problems driven by the Neumann p-Laplacian plus an indefinite potential. In all the
aforementioned works, the parameter enters into the equation by multiplying the con-
cave term. We also mention the works of Aizicovici-Papageorgiou-Staicu [2], Cardinali-
Papageorgiou-Rubbioni [5], Gasiński-Papageorgiou [12] and Motreanu-Tanaka [20]. In
[2] the problem is Robin driven by a nonhomogeneous differential operator with zero
potential term and fλ(z, ·) is strictly (p−1)-sublinear near +∞ and near 0+ (a geometry
complementary to the one assumed here). In [5], the equation is nonlinear logistic of the
superdiffusive type and the operator is the Neumann p-Laplacian with zero potential.
Also, in [12], the equation is Dirichlet driven by the p-Laplacian with zero potential
and the reaction term is λf(z, x) with f(z, ·) being (p− 1)-superlinear. Finally in [20]
the authors deal with Dirichlet and Neumann problems driven by a nonhomogeneous
differential operator and with a reaction with zeros.

Using variational methods based on the critical point theory, together with perturba-
tion and truncation techniques and comparison arguments, we prove a bifurcation type
result describing in a precise way the set of positive solutions of (Pλ) as the parameter
λ > 0 varies. Also, we show that for every admissible parameter λ > 0, the problem (Pλ)
admits a smallest positive solution u∗λ and determine the monotonicity and continuity
properties of the map λ→ u∗λ.

2. Mathematical Background - Hypotheses

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we say that ϕ satisfies the “Cerami
condition” (the “C-condition” for short), if the following is true:

“Every sequence {un}n∈N ⊆ X such that {ϕ(un)}n∈N ⊆ R is bounded and (1 +
‖un‖)ϕ′(un)→ 0 in X∗ as n→ +∞, admits a strongly convergent subsequence”.

This is a compactness-type condition on ϕ. It leads to a deformation theorem from
which one can derive the minimax theory for the critical values of ϕ. Prominent in that
theory is the so-called “mountain pass theorem” of Ambrosetti-Rabinowitz [4]. Here
we state it in a slightly more general form (see Motreanu-Motreanu-Papageorgiou [19],
Theorem 5.40, p. 118).

Theorem 1. If ϕ ∈ C1(X,R) satisfies the C-condition, u0, u1 ∈ X, ‖u1− u0‖ > ρ > 0,
max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ‖u − u0‖ = ρ} = mρ and c = infγ∈Γ max0≤t≤1 ϕ(γ(t))
with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}, then c ≥ mρ and c is a critical value
of ϕ (that is, there exists û ∈ X such that ϕ(û) = c, ϕ′(û) = 0).



PARAMETER DEPENDENCE FOR THE POSITIVE SOLUTIONS OF ROBIN PROBLEMS 3

In the analysis of problem (Pλ), we will use the Sobolev space W 1,p(Ω), the Banach
space C1(Ω) and the “boundary” Lebesgue spaces Lq(∂Ω) (1 ≤ q ≤ ∞).

By ‖ · ‖ we denote the norm of W 1,p(Ω) defined by

‖u‖ =
[
‖u‖pp + ‖∇u‖pp

]1/p
for all u ∈ W 1,p(Ω).

The Banach space C1(Ω) is an ordered Banach space with positive (order) cone given
by

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.
This cone has a nonempty interior given by

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.
In fact the latter is the interior of C+ also when C1(Ω) is equipped with the relative
C(Ω)-topology.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using
this measure on ∂Ω, we can define in the usual way the boundary Lebesgue spaces
Lq(∂Ω) (1 ≤ q ≤ ∞). From the theory of Sobolev spaces we know that there exists
a unique continuous linear map γ0 : W 1,p(Ω) → Lp(∂Ω), called the “trace map”, such
that

γ0(u) = u
∣∣
∂Ω

for all u ∈ W 1,p(Ω) ∩ C1(Ω).

We know that

im γ0 = W
1
p′ ,p(∂Ω)

(
1

p
+

1

p′
= 1

)
and ker γ0 = W 1,p

0 (Ω).

The trace map is compact into Lq(∂Ω) for all q ∈
[
1, (N−1)p

N−p

)
if N > p and into

Lq(∂Ω) for all 1 ≤ q < ∞ if N ≤ p. In what follows we drop the use of the map γ0(·).
All restrictions of Sobolev functions on ∂Ω are understood in the sense of traces.

Now we will introduce the hypotheses on the map a(z, y). So, let θ ∈ C1((0,+∞))
be a function such that

(1) 0 < ĉ0 ≤
θ′(t)t

θ(t)
≤ c0 and c1t

p−1 ≤ θ(t) ≤ c2(tτ−1 + tp−1)

for all t > 0, some c1, c2 > 0, 1 ≤ τ < p <∞.
Let R+ = [0,+∞). The hypotheses on the map a(z, y) are the following:

H(a): a(z, y) = a0(z, |y|)y with a0 ∈ C(Ω × R+), a0(z, t)t > 0 for all z ∈ Ω, all t > 0
and

(i) a0 ∈ C1(Ω×(0,+∞)), for all z ∈ Ω the function t→ a0(z, t)t is strictly increasing
on (0,+∞) and lim

t→0+
a0(z, t)t = 0;

(ii) |∇ya(z, y)| ≤ c3
θ(|y|)
|y|

for all z ∈ Ω, all y ∈ RN \ {0}, some c3 > 0;

(iii) (∇ya(z, y)ξ, ξ)RN ≥
θ(|y|)
|y|
|ξ|2 for all z ∈ Ω, all y, ξ ∈ RN with y 6= 0;

(iv) there exists δ ∈ (0, 1) such that |∇za0(z, t)| ≤ c4(1 + | ln δ|)a0(z, t) for all z ∈ Ω,
all t ∈ [δ, 1], some c4 > 0;

(v) if G0(z, t) =
∫ t

0
a0(z, s)s ds for all t > 0, then pG0(z, t) − a0(z, t)t ≥ −η̃ for all

t > 0, some η̃ > 0;
(vi) there exists q ∈ (1, p) such that for all z ∈ Ω
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• t→ G0(z, t1/q) is convex,

• lim
t→0+

G0(z, t)

tq
= 0 uniformly for all z ∈ Ω,

• c̃tp ≤ a0(z, t)t2 − qG0(z, t) for all z ∈ Ω, all t > 0, some c̃ > 0.

Remark 1. Hypotheses H(a) (i) → (iv) allow us to use the nonlinear regularity theory
of Lieberman [16] and the nonlinear maximum principle of Zhang [28]. Note that if

G0(z, t) =
∫ t

0
a0(z, s)s ds (see hypothesis H(a) (v)), then G0 ∈ C1(Ω× R+) and, for all

z ∈ Ω, G0(z, ·) is strictly convex and strictly increasing. We set G(z, y) = G0(z, |y|) for
all (z, y) ∈ Ω× RN . Then G ∈ C1(Ω× RN) and G(z, ·) is convex. We have

∇yG(z, y) = (G0)′t(z, |y|)
y

|y|
= a0(z, |y|)y = a(z, y) for all z ∈ Ω, all y ∈ RN \ {0},

∇yG(z, 0) = 0.

Therefore G(z, ·) is the primitive of a(z, ·). The convexity of G(z, ·) and the fact that
G(z, 0) = 0 for all z ∈ Ω, imply that

(2) G(z, y) ≤ (a(z, y), y)RN for all z ∈ Ω, all y ∈ RN .

The next lemma summarizes the main properties of the map a(z, ·) and it is a con-
sequence of (1) and of hypotheses H(a) (i), (ii), (iii) (see also Papageorgiou-Rǎdulescu
[22]).

Lemma 1. If hypotheses H(a) (i), (ii), (iii) hold, then

(a) a ∈ C(Ω× RN ,RN) ∩ C1(Ω× RN \ {0},RN) for all z ∈ Ω the map y → a(z, y)
is strictly monotone (thus maximal monotone too);

(b) |a(z, y)| ≤ c5(tτ−1 + |y|p−1) for all z ∈ Ω, all y ∈ RN , some c5 > 0;
(c) (a(z, y), y)RN ≥ c1

p−1
|y|p for all z ∈ Ω, all y ∈ RN .

Using Lemma 1 and (2), we infer the following growth estimates for the primitive
G(z, y).

Corollary 1. If hypotheses H(a) (i), (ii), (iii) hold, then
c1

p(p− 1)
|y|p ≤ G(z, y) ≤ c6(1 + |y|p−1) for all z ∈ Ω, all y ∈ RN , some c6 > 0.

Example 1. Suppose that â ∈ C1(Ω) satisfies

0 < η0 ≤ â(z) ≤ η1 and |∇â(z)| ≤ η1 for all z ∈ Ω.

We consider the following maps

a1(z, y) = â(z)|y|p−2y 1 < p <∞,
a2(z, y) = |y|p−2y + â(z)|y|q−2y 1 < q < p <∞,

a3(z, y) = â(z)[1 + |y|2]
p−2
2 y 1 < p <∞.

They satisfy hypotheses H(a). Note that if â ≡ 1, then a1 corresponds to the p-
Laplacian and a2 to the (p, q)-Laplacian.

Next let us introduce the hypotheses on the potential function ξ(·) and the boundary
coefficient β(·):
H(ξ): ξ ∈ L∞(Ω).
H(β): β ∈ C0,α(∂Ω) for some α ∈ (0, 1) and β(z) ≥ 0 for all z ∈ ∂Ω.



PARAMETER DEPENDENCE FOR THE POSITIVE SOLUTIONS OF ROBIN PROBLEMS 5

Remark 2. When β ≡ 0, we recover the Neumann problem. So, our work unifies Robin
and Neumann problems. In contrast, in [2] β(z) > 0 for all z ∈ ∂Ω.

Suppose that f0 : Ω× R→ R is a Carathéodory function such that

|f0(z, x)| ≤ a0(z)(1 + |x|p∗−1) for a.a. z ∈ Ω, all x ∈ R, with a0 ∈ L∞(Ω).

Here p∗ denotes the critical Sobolev exponent for p ∈ (1,∞) defined by

p∗ =

{
Np
N−p if p < N,

+∞ if N ≤ p.

We set F0(z, x) =
∫ x

0
f0(z, s)ds and consider the C1-functional ϕ0 : W 1,p(Ω) → R

defined by

ϕ0(u) =

∫
Ω

G(z,∇u)dz +
1

p

∫
Ω

ξ(z)|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ −
∫

Ω

F0(z, u)dz

for all u ∈ W 1,p(Ω).
From Papageorgiou-Rǎdulescu [24] (Proposition 8), we have:

Proposition 1. If hypotheses H(a) (i)→ (iv), H(ξ), H(β) hold and u0 ∈ W 1,p(Ω) is a
local C1(Ω)-minimizer of ϕ0(·), that is, there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω), ‖h‖C1(Ω) ≤ ρ0,

then u0 ∈ C1,µ(Ω) for some µ ∈ (0, 1) and u0 is a local W 1,p(Ω)-minimizer of ϕ0, that
is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ W 1,p(Ω) with ‖h‖ ≤ ρ1.

Consider the operator A : W 1,p(Ω)→ W 1,p(Ω)∗ defined by

〈A(u), h〉 =

∫
Ω

(a(z,∇u),∇h)RNdz for all u, h ∈ W 1,p(Ω).

From Gasiński-Papageorgiou [11] (Proposition 3.5), we have:

Proposition 2. If hypotheses H(a) (i), (ii), (iii) hold, then A : W 1,p(Ω)→ W 1,p(Ω)∗ is
bounded (that is, it maps bounded sets to bounded sets), continuous, monotone (hence
maximal monotone too) and of type (S)+, that is,

“un
w−→ u in W 1,p(Ω) and lim sup

n→+∞
〈A(un), un − u〉 ≤ 0⇒ un → u in W 1,p(Ω)′′.

The next result is a variant of the strong comparison principle of Fragnelli-Mugnai-
Papageorgiou [7] (Proposition 3). The present formulation is more suitable for our needs
here.

In what follows by D̂+ we denote the following open cone in C1(Ω)

D̂+ =

{
u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣∣
∂Ω∩u−1(0)

< 0

}
.

Proposition 3. If hypotheses H(a) (i) → (iv) hold, ξ̂ ∈ L∞(Ω), ξ̂ ≥ 0 for a.a. z ∈ Ω,
h1, h2 ∈ L∞(Ω), 0 < c7 ≤ h2(z) − h1(z) for a.a. z ∈ Ω and u, v ∈ C1(Ω) \ {0} satisfy
u ≤ v and

− div a(z,∇u(z)) + ξ̂(z)|u(z)|p−2u(z) = h1(z) for a.a. z ∈ Ω,
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− div a(z,∇v(z)) + ξ̂(z)|v(z)|p−2v(z) = h2(z) for a.a. z ∈ Ω,

then v − u ∈ D̂+.

Proof. We have

− div [a(z,∇v(z))− a(z,∇u(z))]

=h2(z)− h1(z)− ξ̂(z)[|v(z)|p−2v(z)− |u(z)|p−2u(z)] for a.a. z ∈ Ω.(3)

Let a = (ak)
N
k=1 (ak is the kth-component function of a(·)). The mean value theorem

implies that

ak(z, y)− ak(z, y′) =
N∑
i=1

∫ 1

0

∂

∂yi
ak(z, y

′ + t(y − y′))(yi − y′i)dt

for all y = (yi)
N
i=1, all y′ = (y′i)

N
i=1 ∈ RN and all k ∈ {1, . . . , N}.

We introduce the following functions

ĉk,i(z) =

∫ 1

0

∂

∂yi
ak(z,∇u(z) + t(∇v(z)−∇u(z))(∇iv(z)−∇iu(z))dt

with ∇i = ∂
∂zi

, for all z ∈ Ω, all k ∈ {1, . . . , N}. Then ĉk,i(·) ∈ W 1,∞(Ω). Using
these functions as coefficients, we introduce the following linear differential operator in
divergence form

L(w) = −div

(
N∑
i=1

ĉk,i(z)
∂w

∂zi

)
= −

N∑
k,i=1

∂

∂zk

(
ĉk,i(z)

∂w

∂zi

)
for all w ∈ H1(Ω).

Let e = v − u ∈ C+ \ {0}. Then from (3) we have

(4) L(e) = h2(z)− h1(z)− ξ̂(z)[|v(z)|p−2v(z)− |u(z)|p−2u(z)] for a.a. z ∈ Ω.

Suppose that for some z0 ∈ Ω we have u(z0) = v(z0). Then the uniform continuity of
the map x→ |x|p−2x on [−‖v‖∞, ‖v‖∞] (the map is Hölder continuous if 1 < p < 2 and

locally Lipschitz if p ≥ 2, see [9], inequalities (3.1)) and the fact that ξ̂ ∈ L∞(Ω), imply
that for δ > 0 small we have

L(e)(z) ≥ c8 > 0 for a.a. z ∈ Bδ(z0) = {z ∈ Ω : |z − z0| < δ}.

Invoking the Harnack inequality (see Pucci-Serrin [26], Theorem 7.2.1, p. 163) we
have e(z) = (v − u)(z) > 0 for all z ∈ Bδ(z0), a contradiction since u(z0) = v(z0)
(alternatively, instead of Harnack’s inequality, we can use the tangency principle of
Pucci-Serrin [26], Theorem 2.5.2, p. 35 or Theorem 4 of Vázquez [27]). So, we have
proved that

e(z) = (v − u)(z) > 0 for all z ∈ Ω.

Next let Σ0 = {z ∈ ∂Ω : e(z) = (v− u)(z) = 0} and assume that Σ0 6= ∅ (otherwise we
already have e = v − u ∈ D+ ⊆ int C+). Recall that ∂Ω is a C2-manifold. Then given
z0 ∈ Σ0, we can find ρ > 0 small and an ρ-ball Bρ such that

Bρ ⊆ Ω and z0 ∈ ∂Ω ∩ ∂Bρ.
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Choosing ρ > 0 small from (4) and since u(z0) = v(z0) (recall z0 ∈ Σ0), we see that L(·)
is strictly elliptic. So, from the strong maximum principle (see Theorem 4 of Vázquez
[27] or Theorem 2.8.3, p. 43 of Pucci-Serrin [26]), we have

∂e

∂n
(z0) =

∂(v − u)

∂n
(z0) < 0,

⇒ e = v − u ∈ D̂+.

�

Let x ∈ R. We set x± = max{±x, 0} and then given u ∈ W 1,p(Ω) we define u±(·) =
u(·)±. We know that

u± ∈ W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

Also given ϕ ∈ C1(X,R) (X being as before a Banach space), we define

Kϕ = {u ∈ X : ϕ′(u) = 0}
the critical set of ϕ.

Finally we introduce the hypotheses on the reaction term fλ(z, x). In what follows
Fλ(z, x) =

∫ x
0
fλ(z, s)ds.

H(f): f : Ω×R× (0,+∞)→ R (f(z, x, λ) = fλ(z, x)) is Carathéodory, for a.a. z ∈ Ω,
all λ > 0, fλ(z, 0) = 0 and
(i) there exist aλ ∈ L∞(Ω) and rλ ∈ (p, p∗) nondecreasing in λ > 0 such that

λ→ ‖aλ‖∞ is bounded on bounded sets of (0,+∞),

|fλ(z, x)| ≤ aλ(z)(1 + xrλ−1) for a.a. z ∈ Ω, all x ≥ 0,

rλ → r0 ∈ (p, p∗) as λ→ 0+;

(ii) for every λ > 0, we have

lim
x→+∞

Fλ(z, x)

xp
= +∞ uniformly for a.a. z ∈ Ω;

(iii) for every λ > 0, there exists γλ ∈ L1(Ω)+ such that

λ→ ‖γλ‖∞ is bounded on bounded sets of (0,+∞)

and if dλ(z, x) = fλ(z, x)x− pFλ(z, x), then

dλ(z, x) ≤ dλ(z, y) + γλ(z) for a.a. z ∈ Ω, all 0 ≤ x ≤ y;

(iv) for every λ > 0, every s > 0, there exists θλ(s) > 0 such that

θλ(s)→ +∞ as λ→ +∞,
inf[fλ(z, x) : x ≥ s] ≥ θλ(z) for a.a. z ∈ Ω;

(v) for every λ > 0, there exist qλ ∈ [1, q), ηλ > 0 and δλ ∈ (0, 1] such that

ηλx
qλ−1 ≤ fλ(z, x) for a.a. z ∈ Ω, all 0 ≤ x ≤ δλ

and there exist r∗ ∈ (rλ, p
∗) and bλ, b1, b2 > 0 such that

bλ → 0+ as λ→ 0+,

fλ(z, x) ≤ bλx
qλ−1 + b1x

r∗−1 − b2x
p−1 for a.a. z ∈ Ω, all x ≥ 0;

(vi) for every λ > λ′ > 0, every s > 0, there exists ηλ,λ′(s) > 0 such that

fλ(z, x)− fλ′(z, x) ≥ ηλ,λ′(s) for a.a. z ∈ Ω, all x ≥ s;
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(vii) for every λ > 0 and every ρ > 0, there exists ξ̂ρλ > 0 such that, for a.a.
z ∈ Ω, the function

x→ fλ(z, x) + ξ̂ρλx
p−1

is nondecreasing on [0, ρ].

Remark 3. Since we are looking for positive solutions and all the above hypotheses
concern the positive semiaxis R+ = [0,+∞), without any loss of generality we assume
that

fλ(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0, all λ > 0.

Hypotheses H(f) (ii), (iii) imply that fλ(z, ·) is (p− 1)-superlinear near +∞. However,
this superlinearity condition is not formulated using the AR-condition. Instead we
employ a quasimonotonicity condition on dλ(z, ·) (see hypothesis H(f) (iii)). This way
we can fit in our framework superlinear reactions with “slower” growth which fail to
satisfy the AR-condition (see the Examples below). Recall that the AR-condition says
that for all λ > 0, we can find Mλ > 0 such that

0 < pFλ(z, x) ≤ fλ(z, x)x for a.a. z ∈ Ω, all x ≥Mλ,(5a)

0 < ess infΩFλ(·,Mλ)(5b)

(see Ambrosetti-Rabinowitz [4] and Mugnai [21]).
The quasimonotonicity condition H(f) (iii) is a slightly more general version of a

condition used by Li-Yang [17]. It is satisfied if for all λ > 0, there exists Mλ > 0 such
that for a.a. z ∈ Ω

x→ fλ(z, x)

xp−1
is nondecreasing on [Mλ,+∞),

or equivalently that

x→ dλ(z, x) is nondecreasing on [Mλ,+∞).

For details, see Li-Yang [17]. Hypothesis H(f) (v) implies the presence of a “concave”
term near zero.

Example 2. Hypotheses H(f) above incorporate in our setting the classical “concave-
convex” nonlinearity encountered in the literature

f 1
λ(x) = λ[xq−1 + xr−1] for all x ≥ 0, with 1 < q < p < r < p∗.

This function clearly satisfies the AR-condtion (see (5a), (5b)). On the other hand the
function

f 2
λ(x)

{
λxq−1 − cxθ−1 if 0 ≤ x ≤ 1,

xp−1 lnx+ λ(1− c) if 1 < x,

with 1 < q < θ < p, 0 ≤ c < 1 satisfies hypotheses H(f) but not the AR-condition.
Finally we present a function satisfying hypothes H(f), in which the parameter λ > 0

enters in a nonlinear nonmultiplicative way

f 3
λ(x)

{
xq−1 if 0 ≤ x ≤ ρλ,

xp−1 lnx+ µλ if ρλ < x,

with 1 < q < p, µλ = ρq−1
λ [1− ρp−qλ ln ρλ], ρλ ∈ (0, 1], ρλ → 0+ as λ→ 0+.
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Since qλ < p < r∗, by increasing appropriately bλ (preserving the property that
bλ → 0+ as λ→ 0+) and b1 > 0, we can always assume that b2 > ‖ξ‖∞ (see hypothesis
H(ξ)).

We introduce the following truncation-perturbation of fλ(z, ·):

(6) f̂λ(z, x) =

{
0 if x ≤ 0,

fλ(z, x) + b2x
p−1 if x > 0.

This is a Charathéodory function. We set F̂λ(z, x) =
∫ x

0
f̂λ(z, s)ds and consider the

C1-functional ϕ̂λ : W 1,p(Ω)→ R defined by

ϕ̂λ(u) =

∫
Ω

G(z,∇u)dz +
1

p

∫
Ω

[ξ(z) + b2]|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ −
∫

Ω

F̂λ(z, u)dz

for all u ∈ W 1,p(Ω).

Proposition 4. If hypotheses H(a), H(ξ), H(β), H(f) hold, then, for every λ > 0, ϕ̂λ
satisfies the C-condition.

Proof. Consider a sequence {un}n∈N ⊆ W 1,p(Ω) such that

(7) |ϕ̂λ(un)| ≤M1 for some M1 > 0, all n ∈ N,

(8) (1 + ‖un‖)ϕ̂′λ(un)→ 0 in W 1,p(Ω)∗ as n→ +∞.
From (8) we have

〈ϕ̂′λ(un), h〉 ≤ εn‖h‖
1 + ‖un‖

, for all h ∈ W 1,p(Ω) with εn → 0+,

⇒
∣∣∣〈A(un), h〉+

∫
Ω

[ξ(z) + b2]|un|p−2un h dz +

∫
∂Ω

β(z)|un|p−2un h dσ −
∫

Ω

f̂λ(z, un)h dz
∣∣∣

(9)

≤ εn‖h‖
1 + ‖un‖

, for all n ∈ N.

In (9) we choose h = −u−n ∈ W 1,p(Ω) and obtain

c1

p− 1
‖∇u−n ‖pp +

∫
Ω

[ξ(z) + b2](u−n )p dz ≤ εn for all n ∈ N

(see Lemma 1, hypothesis H(β) and (6))

⇒ c9‖u−n ‖p ≤ εn for some c9 > 0, all n ∈ N, (recall that b2 > ‖ξ‖∞)

⇒ u−n → 0 in W 1,p.(10)

Next in (9) we choose h = u+
n ∈ W 1,p(Ω). Then

(11)

−
∫

Ω

(a(z,∇u+
n ),∇u+

n )RNdz−
∫

Ω

ξ(z)(u+
n )pdz−

∫
∂Ω

β(z)(u+
n )pdσ+

∫
Ω

fλ(z, u
+
n )u+

n dz ≤ εn,

for all n ∈ N (see (6)).
On the other hand from (6), (7) and (10), we have

(12)

∫
Ω

pG(z,∇u+
n )dz +

∫
Ω

ξ(z)(u+
n )pdz +

∫
∂Ω

β(z)(u+
n )pdσ −

∫
Ω

pFλ(z, u
+
n )dz ≤M2,
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for some M2 > 0, all n ∈ N.
We add (11) and (12). We obtain∫

Ω

[pG(z,∇u+
n )− (a(z,∇u+

n ),∇u+
n )RN ]dz +

∫
Ω

dλ(z, u
+
n )dz ≤M3

for some M3 > 0, all n ∈ N

⇒
∫

Ω

dλ(z, u
+
n )dz ≤M4 for some M4 > 0, all n ∈ N (see hypothesis H(a) (v)).

(13)

Claim: {u+
n }n∈N ⊆ W 1,p(Ω) is bounded.

We argue by contradiction. So, suppose that the Claim is not true. Then we may

assume that ‖u+
n ‖ → +∞ as n→ +∞. Let yn =

u+
n

‖u+
n ‖

, n ∈ N. Then ‖yn‖ = 1, yn ≥ 0

for all n ∈ N and so, by passing to a subsequence if necessary, we have

(14) yn
w−→ y in W 1,p(Ω) and yn → y in Lrλ(Ω) and in Lp(∂Ω), y ≥ 0.

First we assume that y 6= 0. Let Ω∗ = {z ∈ Ω : y(z) > 0}. Then |Ω∗|N > 0 (here by
| · |N we denote the Lebesgue measure on RN). We have

u+
n (z)→ +∞ for a.a. z ∈ Ω∗.

Then, on account of hypothesis H(f) (ii), we have

(15)
Fλ(z, u

+
n (z))

‖u+
n ‖p

=
Fλ(z, u

+
n (z))

u+
n (z)p

yn(z)p → +∞ for a.a. z ∈ Ω∗.

Hypotheses H(f) (i), (ii) imply that we can find c10 > 0 such that

(16) −c10 ≤ Fλ(z, x) for a.a. z ∈ Ω, all x ≥ 0.

We have ∫
Ω

Fλ(z, u
+
n )

‖u+
n ‖p

dz =

∫
Ω∗

Fλ(z, u
+
n )

(u+
n )p

ypndz +

∫
Ω\Ω∗

Fλ(z, u
+
n )

‖u+
n ‖p

dz

≥
∫

Ω∗

Fλ(z, u
+
n )

(u+
n )p

ypndz −
c10

‖u+
n ‖p
|Ω|N for all n ∈ N (see (16)),

⇒
∫

Ω

Fλ(z, u
+
n )

‖u+
n ‖p

dz → +∞ as n→ +∞ (see (15) and use Fatou’s lemma).(17)

Hypotheses H(f) (iii) implies that

dλ(z, x) ≥ −γλ(z) for a.a. z ∈ Ω, all x ≥ 0,

⇒ pFλ(z, x) ≤ fλ(z, x)x+ γλ(z) for a.a. z ∈ Ω, all x ≥ 0.

Then using (15) we have∫
Ω

p
Fλ(z, u

+
n )

‖u+
n ‖p

dz

≤
∫

Ω

fλ(z, u
+
n )

‖u+
n ‖p−1

yndz +
‖γλ‖1

‖u+
n ‖p

≤ c11 +
‖γλ‖1

‖u+
n ‖p

(see (1) and hypotheses H(a) (v), (vi))
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≤M5 for some M5 > 0, all n ∈ N.(18)

Comparing (17) and (18), we have a contradiction.
Next suppose that y = 0. Consider the C1-functional ϕ̃λ : W 1,p(Ω)→ R defined by

ϕ̃λ(u) =
c1

p(p− 1)
‖∇u‖pp +

1

p

∫
Ω

[ξ(z) + b2]|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ −
∫

Ω

F̂λ(z, u)dz

for all u ∈ W 1,p(Ω). Evidently, ϕ̃λ ≤ ϕ̂λ (see Corollary 1). For every n ∈ N, let
tn ∈ [0, 1] be such that

(19) ϕ̃λ(tnun) = max[ϕ̃λ(tun) : 0 ≤ t ≤ 1].

Let τ > 0, η0 = min
{

c1
p−1

, 1
}

and set vn =
(
τp
η0

) 1
p
yn, n ∈ N. From (14) and since

y = 0, we have vn → 0 in Lrλ(Ω) as n → +∞. Then from hypothesis H(f) (i) and
Krasnoselskii’s theorem (see Gasiński-Papageorgiou [10], Theorem 3.4.4, p. 407), we
have ∫

Ω

Fλ(z, vn)dz → 0 as n→ +∞.

Recall that ‖u+
n ‖ → +∞. So, we can find n0 ∈ N such that(

τp

η0

) 1
p 1

‖u+
n ‖
∈ (0, 1) for all n ≥ n0.

Therefore for all n ≥ n0 we have

ϕ̃λ(tnu
+
n ) ≥ ϕ̃λ(vn) ( see (19))

=
c1

p(p− 1)
‖∇vn‖pp +

1

p

∫
Ω

ξ(z)vpndz +
1

p

∫
∂Ω

β(z)vpndσ −
∫

Ω

Fλ(z, vn)dz

(see (6) and note that vn ≥ 0 for all n ∈ N)

≥ c1

p(p− 1)
‖∇vn‖pp +

1

p
‖vn‖pp +

[
1

p

∫
Ω

ξ(z)vpndz −
1

p
‖vn‖pp −

∫
Ω

Fλ(z, vn)dz

]
≥ η0

p
‖vn‖pp + µn

with µn =
1

p

∫
Ω
ξ(z)vpndz −

1

p
‖vn‖pp −

∫
Ω
Fλ(z, vn)dz, n ≥ n0. It follows that

(20) ϕ̃λ(tnu
+
n ) ≥ τ + µn for all n ≥ n0 (recall ‖yn‖ = 1 for all n ∈ N).

Evidently µn → 0 as n→ +∞. Therefore from (20) we have

(21) ϕ̃λ(tnu
+
n ) ≥ τ

2
for all n ≥ n1 ≥ n0.

Since τ > 0 is arbitrary, from (21) we conclude that

(22) ϕ̃λ(tnu
+
n )→ +∞ as n→ +∞.

Note that
(23)
ϕ̃λ(0) = 0 and ϕ̃λ(u

+
n ) ≤M1 for all n ∈ N (see (7), (10) and recall that ϕ̃λ ≤ ϕ̂λ).

From (22) and (23) it follows that

tn ∈ (0, 1) for all n ≥ n2.
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Hence for n ≥ n2 we have

0 = tn
d

dt
ϕ̃λ(tu

+
n )
∣∣∣
t=tn

= 〈ϕ̃′λ(tnu+
n ), tnu

+
n 〉 (by the chain rule)

=
c1

p− 1
‖∇(tnu

+
n )‖pp +

∫
Ω

ξ(z)(tnu
+
n )pdz +

∫
∂Ω

β(z)(tnu
+
n )pdσ

−
∫

Ω

fλ(z, tnu
+
n )(tnu

+
n )dz(see (6)),

⇒ pϕ̃λ(tnu
+
n )−

∫
Ω

dλ(z, tnu
+
n )dz = 0 for all n ≥ n2,

⇒ pϕ̃λ(tnu
+
n )−

∫
Ω

dλ(z, tnu
+
n )dz − ‖γλ‖1 ≤ 0 for all n ≥ n2,

see hypothesis H(f) (iii) and recall tn ∈ (0, 1), n ≥ n2)

⇒ pϕ̃λ(tnu
+
n ) ≤M6 for some M6 ≥ 0, all n ≥ n2 (see (13)).(24)

Comparing (22) and (24) we have a contradiction. This proves the Claim. On account
of the Claim, we may assume that

(25) u+
n

w−→ û in W 1,p(Ω) and u+
n → û in Lrλ(Ω) and in Lp(∂Ω).

From (9), (10) and (6), we have
(26)∣∣∣〈A(u+

n ), h〉+

∫
Ω

ξ(z)(u+
n )p−1 h dz +

∫
∂Ω

β(z)(u+
n )p−1 h dσ −

∫
Ω

fλ(z, u
+
n )h dz

∣∣∣ ≤ ε′n‖h‖

for all n ∈ N, all h ∈ W 1,p(Ω), with ε′n → 0+.
In (26) we choose h = u+

n − û ∈ W 1,p(Ω), pass to the limit as n→ +∞ and use (25).
Then

lim
n→+∞

〈A(u+
n ), u+

n − û〉 = 0,

⇒ u+
n → û in W 1,p(Ω) (see Proposition 2),

⇒ un → û in W 1,p(Ω) (see (10)),

⇒ ϕ̂λ satisfies the C-condition.

�

Next we show that for λ > 0 small the mountain pass geometry (see Theorem 1) is
satisfied.

Proposition 5. If hypotheses H(a), H(ξ), H(β), H(f) hold, then we can find λ0 > 0
such that for all λ ∈ (0, λ0) there exists ρλ > 0 for which we have

inf[ϕ̂λ(u) : ‖u‖ = ρλ] = m̂λ > 0.

Proof. Hypothesis H(f) (v) implies that

(27) Fλ(z, x) ≤ bλ
qλ
xqλ +

b1

r∗
xr∗ − b2

p
xp for a.a. z ∈ Ω, all x ≥ 0.

Then for all u ∈ W 1,p(Ω), we have

ϕ̂λ(u) ≥ c1

p(p− 1)
‖∇u‖pp +

1

p

∫
Ω

[ξ(z) + b2]|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ
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− bλ
qλ
‖u+‖qλqλ −

b1

r∗
‖u+‖r∗r∗ (see (27) and (6))

≥ c12‖u‖p − c13[bλ‖u‖qλ + ‖u‖r∗ ] for some c12, c13 (recall b2 > ‖ξ‖∞)

= [c12 − c13(bλ‖u‖qλ−p + ‖u‖r∗−p)]‖u‖p.(28)

Let Jλ(t) = bλt
qλ−p + tr∗−p for all t > 0. Since qλ < p < r∗, it follows that

Jλ(t)→ +∞ as t→ 0+ and t→ +∞.
So, we can find t0 ∈ (0,+∞) such that

Jλ(t0) = inf
t≥0

Jλ(t).

We have

J ′λ(t0) = 0,

⇒ bλ(p− qλ)tqλ−p−1
0 = (r∗ − p)tr∗−p−1

0 ,

⇒ tr∗−qλ0 =
bλ(p− qλ)
r∗ − p

,

⇒ t0 =

(
bλ(p− qλ)
r∗ − p

) 1
r∗−qλ

.

Then we have

(29) Jλ(t0) = bλ

(
r∗ − p

bλ(p− qλ)

) p−qλ
r∗−qλ

+

(
bλ(p− qλ)
r∗ − p

) r∗−p
r∗−qλ

.

Note that
p− qλ
r∗ − qλ

< 1 and bλ → 0+ as λ→ 0+ (see hypothesis H(f) (v)).

Then from (29) it follows that

Jλ(t0)→ 0+ as λ→ 0+.

Therefore we can find λ0 > 0 such that

c13Jλ(t0) < c12 for all λ ∈ (0, λ0).

Using this in (28), we see that

inf[ϕ̂λ(u) : ‖u‖ = ρλ = t0(λ)] = m̂λ > 0 for all λ ∈ (0, λ0).

�

We introduce the following two sets:

L := {λ > 0 : problem (Pλ) admits a positive solution},
Sλ is the set of positive solutions of problem (Pλ).

In the next result we will use the nonlinear strong maximum principle of Zhang [28]
(nonlinear Hopf boundary point theorem). The result of Zhang [28] concerns nonlin-
ear, nonhomogeneous differential operators with nonstandard growth (that is, p(z)-
equations). Of course such a result includes as a special case, operators with standard
balanced growth as is our operator here. In Zhang [28] the conditions on the map a(z, y)
are the “nonstandard” counterpart of the conditions used by Lieberman [15] in his first
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global nonlinear regularity results. Later Lieberman [16] extended those regularity re-
sults using the more general which as we already remarked, we use here (see hypotheses
H(a) (i), (ii), (iii)). So, these conditions together with hypothesis H(a) (iv) taken from
Zhang [28] (see (7)), guarantee the validity of Theorems 1.1 and 1.2 of Zhang [28] in our
setting. In fact a look at the proof of Theorem 1.1, p. 29 of [28] reveals that with very
minor changes remains valid, under our conditions (see (1) in this paper). Therefore
the result of Zhang [28] can be used here.

Proposition 6. If hypotheses H(a), H(ξ), H(β), H(f) hold, then Sλ ⊆ D+.

Proof. Let λ ∈ L and uλ ∈ Sλ. Then

− div a(z,∇uλ(z)) + ξ(z)uλ(z)p−1 = fλ(z, uλ(z)) for a.a. z ∈ Ω,

∂u

∂na
+ β(z)up−1

λ = 0 on ∂Ω, (see Papageorgiou-Rǎdulescu [23]).(30)

From (30) and Papageorgiou-Rǎdulescu [24] (Proposition 2.10), we have

uλ ∈ L∞(Ω).

Then the nonlinear regularity theory of Lieberman [16] implies that

uλ ∈ C+ \ {0}.

Let ρ = ‖uλ‖∞ and let ξ̂ρλ > 0 be as postulated by hypothesis H(f) (vii). From (30) we
have

div a(z,∇uλ(z)) ≤ [‖ξ‖∞ + ξ̂ρλ]uλ(z)p−1 for a.a. z ∈ Ω

⇒ uλ ∈ D+ (see Zhang [28], Theorem 1.2).

Hence we conclude that Sλ ⊆ D+. �

Next we prove a structural property of L.

Proposition 7. If hypotheses H(a), H(ξ), H(β), H(f) hold, then (0, λ] ⊆ L for each
λ ∈ L.

Proof. Let τ ∈ (0, λ) and let uλ ∈ Sλ ⊆ D+ (see Proposition 6). Recall b2 > ‖ξ‖∞ and
consider the following Carathéodory function

(31) kτ (z, x) =

{
fτ (z, x) + b2(x+)p−1 if x < uλ(z),

fτ (z, uλ(z)) + b2uλ(z)p−1 if uλ(z) ≤ x.

We set Kτ (z, x) =
∫ x

0
kτ (z, s)ds and let ψ̂τ : W 1,p(Ω)→ R be the C1-functional defined

by

ψ̂τ (u) =

∫
Ω

G(z,∇u)dz +
1

p

∫
Ω

[ξ(z) + b2]|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ −
∫

Ω

Kτ (z, u)dz

for all u ∈ W 1,p(Ω). From (31) and since b2 > ‖ξ‖∞, we see that ψ̂τ is coercive. Also,

using the Sobolev embedding and the compactness of the trace map, we have that ψ̂τ (·)
is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem,
we can find uτ ∈ W 1,p(Ω) such that

(32) ψ̂τ (uτ ) = inf[ψ̂τ (u) : u ∈ W 1,p(Ω)].
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Hypothesis H(a) (vi) implies that we can find δ̂ ∈ (0,min{δτ ,minΩ uλ, 1}) (recall that
uλ ∈ D+) such that

(33) G(z, y) ≤ |y|q for all y ∈ RN , |y| ≤ δ̂.

Let u ∈ D+ and choose t ∈ (0, 1) small such that

(34) tu(z), t|∇u(z)| ∈ (0, δ̂] for all z ∈ Ω.

From (33), (34) and hypothesis H(f) (v) (recall δ̂ < δτ ), we have

ψ̂τ (tu) ≤ tqc14‖u‖q + tp
∫
∂Ω

β(z)|u|pdσ − tqληλ‖u‖qλqλ ,

for some c14 > 0 (note that |tu|p ≤ |tu|q since q < p, δ̂ < 1).
Recall that 1 ≤ qλ < q and t ∈ (0, 1). So, by choosing t ∈ (0, 1) even smaller if

necessary, we have

ψ̂τ (tu) < 0,

⇒ ψ̂τ (uτ ) < 0 = ψ̂τ (0) (see (32)),

⇒ uτ 6= 0.

From (32) we have

ψ̂′τ (uτ ) = 0,

⇒ 〈A(uτ ), h〉+

∫
Ω

[ξ(z) + b2]|uτ |p−2uτhdz +

∫
∂Ω

β(z)|uτ |p−2uτhdσ =

∫
Ω

kτ (z, uτ )hdz

(35)

for all h ∈ W 1,p(Ω). In (35) we choose h = −u−τ ∈ W 1,p(Ω). Then

c1

p− 1
‖∇u−τ ‖pp +

∫
Ω

[ξ(z) + b2](u−τ )pdz ≤ 0 (see hypothesis H(β) and (31)),

⇒ c15‖u−τ ‖p ≤ 0 for some c15 > 0 (recall b2 > ‖ξ‖∞),

⇒ uτ ≥ 0, uτ 6= 0.(36)

Also, in (35) we choose h = (uτ − uλ)+ ∈ W 1,p(Ω). Then

〈A(uτ ), (uτ − uλ)+〉+

∫
Ω

[ξ(z) + b2]up−1
τ (uτ − uλ)+dz +

∫
∂Ω

β(z)up−1
τ (uτ − uλ)+dσ

=

∫
Ω

[fτ (z, uλ) + b2u
p−1
λ ](uτ − uλ)+dz (see (31))

≤
∫

Ω

[fλ(z, uλ) + b2u
p−1
λ ](uτ − uλ)+dz (see hypothesis H(f) (vi))

=〈A(uλ), (uτ − uλ)+〉+

∫
Ω

[ξ(z) + b2]up−1
λ (uτ − uλ)+dz +

∫
∂Ω

β(z)up−1
λ (uτ − uλ)+dσ

(since uλ ∈ Sλ),
⇒ uτ ≤ uλ (recall b2 > ‖ξ‖∞ and see hypothesis H(β)).

Therefore, we have proved that

uτ ∈ [0, uλ] = {u ∈ W 1,p(Ω) : 0 ≤ u(z) ≤ uλ(z) for a.a. z ∈ Ω},(37)
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uτ 6= 0 (see (36)).

From (35), (37) and (31), we obtain

〈A(uτ ), h〉+

∫
Ω

ξ(z)up−1
τ hdz +

∫
∂Ω

β(z)up−1
τ hdσ =

∫
Ω

fτ (z, uτ )hdz

for all h ∈ W 1,p(Ω)

⇒ uτ ∈ Sτ ⊆ D+ and so τ ∈ L.
Therefore (0, λ] ⊆ L. �

The above proposition implies that L is an interval. Moreover, an interesting byprod-
uct of the above proof, is the following monotonicity-type property for the solution
multifunction λ→ Sλ:

(WM) “If λ ∈ L, τ ∈ (0, λ] and uλ ∈ Sλ ⊆ D+, then τ ∈ L and we can find uτ ∈ Sτ ⊆
D+ such that uλ − uτ ∈ C+ \ {0}.”

With a little additional effort, we can have the following strong monotonicity property
for the solution multifunction λ→ Sλ.

Proposition 8. If hypotheses H(a), H(ξ), H(β), H(f) hold, λ ∈ L, µ ∈ (0, λ) and

uλ ∈ Sλ ⊆ D+, then µ ∈ L and there exists uµ ∈ Sµ such that uλ − uµ ∈ D̂+.

Proof. From Proposition 7 and the (WM)-property above, we already know that µ ∈ L
and we can find uµ ∈ Sµ ⊆ D+ such that

(38) uλ − uµ ∈ C+ \ {0}.

Let ρ = ‖uλ‖∞ and let ξ̂ρλ, ξ̂
ρ
µ > 0 be as postulated by hypothesis H(f) (vii). We set

ξ̃ρ∗ = max{ξ̂ρλ, ξ̂ρµ, ‖ξ‖∞} and ξ̂ρ∗ > ξ̃ρ∗ . Evidently for a..a. z ∈ Ω we have that

x→ fλ(z, x) + ξ̂ρ∗x
p−1 and x→ fµ(z, x) + ξ̂ρ∗x

p−1

are nondecreasing on [0, ρ].
We have

− div a(z,∇uµ(z)) + [ξ(z) + ξ̂ρ∗ ]uµ(z)p−1

= fµ(z, uµ(z)) + ξ̂ρ∗uµ(z)p−1

= fλ(z, uµ(z)) + ξ̂ρ∗uµ(z)p−1 − [fλ(z, uµ(z))− fµ(z, uµ(z))]

≤ fλ(z, uµ(z)) + ξ̂ρ∗uµ(z)p−1 − ηλ,µ(s) with s = minΩ uµ (see hypothesis H(f) (vi))

< fλ(z, uλ(z)) + ξ̂ρ∗uλ(z)p−1 (see (38) and recall ηλ,µ(s) > 0)

− div a(z,∇uλ(z)) + [ξ(z) + ξ̂ρ∗ ]uλ(z)p−1 for a.a. z ∈ Ω (recall that uλ ∈ Sλ).
(39)

If h1(z) = fµ(z, uµ(z)) + ξ̂ρ∗uµ(z)p−1, h2(z) = fλ(z, uλ(z)) + ξ̂ρ∗uλ(z)p−1, then

h1, h2 ∈ L∞(Ω),

0 < ηλ,µ(s) ≤ h2(z)− h1(z) for a.a. z ∈ Ω.

From (39) and Proposition 3, it follows that

uλ − uµ ∈ D̂+.

�
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Now we prove that L 6= ∅ (that is, existence of admissible parameters).

Proposition 9. If hypotheses H(a), H(ξ), H(β), H(f) hold, then L 6= ∅.

Proof. Let λ0 > 0 be as in Proposition 5 and let λ ∈ (0, λ0). From Proposition 4 we
know that

(40) ϕ̂λ satisfies the C-condition.

Also from Proposition 2 we have

(41) 0 = ϕ̂λ(0) < inf[ϕ̂λ(u) : u ∈ W 1,p(Ω)] = m̂λ.

If u ∈ D+, then hypothesis H(f) (iii) implies that

(42) ϕ̂λ(tu)→ −∞ as t→ +∞.
On account of (40), (41), (42) we can apply Theorem 1 (the mountain pass theorem)
and find uλ ∈ W 1,p(Ω) such that

(43) uλ ∈ Kϕ̂λ and m̂λ ≤ ϕ̂λ(uλ).

From (43) and (41), we have
uλ 6= 0

(44) 〈A(uλ), h〉+
∫

Ω

[ξ(z)+b2]|uλ|p−2uλh dz+

∫
∂Ω

β(z)|uλ|p−2uλh dσ =

∫
Ω

f̂λ(z, uλ)h dz

for all h ∈ W 1,p(Ω).
In (44) we choose h = −u−λ ∈ W 1,p(Ω). Then

c1

p− 1
‖∇u−λ ‖

p
p +

∫
Ω

[ξ(z) + b2](u−λ )pdz ≤ 0 (see Lemma 1, hypothesis H(β) and (6)),

⇒ c16‖u−λ ‖
p ≤ 0 for some c16 > 0 (recall that b2 > ‖ξ‖∞),

⇒ uλ ≥ 0, uλ 6= 0.

Then (44) becomes

〈A(uλ), h〉+

∫
Ω

ξ(z)up−1
λ hdz +

∫
∂Ω

β(z)up−1
λ hdσ =

∫
Ω

fλ(z, uλ)hdz

for all h ∈ W 1,p(Ω) (see (6))

⇒ uλ ∈ Sλ ⊆ D+ and λ ∈ L, hence L 6= ∅ (in fact (0, λ0) ⊆ L).

�

We set λ∗ = supL > 0.

Proposition 10. If hypotheses H(a), H(ξ), H(β), H(f) hold, then λ∗ <∞.

Proof. We fix µ > ‖ξ‖∞. We claim that we can find λ̂ > 0 such that

(45) fλ̂(z, x) ≥ µxp−1 for a.a. z ∈ Ω, all x ≥ 0.

To see this, we fix λ0 > 0. Hypotheses H(f) (ii), (iii) imply that we can find M7 > 0
such that

(46) fλ0(z, x) ≥ µxp−1 for a.a. z ∈ Ω, all x ≥M7.

Since qλ0 < q < p, hypothesis H(f) (v) implies that we can find δ0 ∈ (0, δλ0 ] such that

(47) fλ0(z, x) ≥ ηλ0x
qλ0−1 ≥ µxp−1 for a.a. z ∈ Ω, all 0 ≤ x ≤ δ0.
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From hypothesis H(f) (iv) we know

θλ(δ0)→ +∞ as λ→ +∞.

Therefore we can find λ̂ > λ0 such that

θλ̂(δ0) ≥ µMp−1
7 .

Then hypothesis H(f) (iv) implies that

(48) fλ̂(z, x) ≥ θλ̂(δ0) ≥ µMp−1
7 ≥ µxp−1 for a.a. z ∈ Ω, all δ0 ≤ x ≤M7.

From (46), (47), (48) and since λ → fλ(z, x) is increasing (see hypothesis H(f) (vi)),
we infer that (45) holds.

Consider λ > λ̂ and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ D+. We set
0 < mλ = minΩ uλ.

For δ > 0 small, let mδ
λ = mλ + δ. For ρ = ‖uλ‖∞ let ξ̂ρλ > 0 be as postulated by

hypothesis H(f) (vii). We can always assume that ξ̂ρλ > ‖ξ‖∞. Then

− div a(z,∇mδ
λ) + [ξ(z) + ξ̂ρλ](m

δ
λ)
p−1

= [ξ(z) + ξ̂ρλ](m
δ
λ)
p−1

< [µ+ ξ̂ρλ](m
δ
λ)
p−1 (recall that µ > ‖ξ‖∞)

≤ [µ+ ξ̂ρλ]m
p−1
λ + χ(δ) with χ(δ)→ 0+ as δ → 0+

≤ fλ̂(z,mλ) + ξ̂ρλm
p−1
λ + χ(δ) (see (45))

= fλ(z,mλ) + ξ̂ρλm
p−1
λ + [fλ̂(z,mλ)− fλ(z,mλ)] + χ(δ)

≤ fλ(z,mλ) + ξ̂ρλm
p−1
λ − ηλ,λ̂(mλ) + χ(δ) (see hypothesis H(f) (vi))

≤ fλ(z, uλ(z)) + ξ̂ρλuλ(z)p−1 − ηλ,λ̂(mλ) + χ(δ)

(see hypothesis H(f) (vii) and recall mλ = minΩ uλ)

≤ fλ(z, uλ(z)) + ξ̂ρλuλ(z)p−1 − 1

2
ηλ,λ̂(mλ)

for δ > 0 small (recall χ(δ)→ 0+ as δ → 0+)

< fλ(z, uλ(z)) + ξ̂ρλuλ(z)p−1

= −div a(z,∇uλ(z)) + ξ̂ρλuλ(z)p−1 for a.a. z ∈ Ω (since uλ ∈ Sλ).(49)

From (49) it follows that

mδ
λ ≤ uλ for δ > 0 small.

This contradicts the fact that mλ = minΩ uλ. Therefore λ 6∈ L and we have

λ∗ = supL ≤ λ̂ < +∞.
�

Combining Propositions 7 and 10, we have

(50) (0, λ∗) ⊆ L ⊆ (0, λ∗].

Proposition 11. If hypotheses H(a), H(ξ), H(β), H(f) hold and λ ∈ (0, λ∗), then
problem (Pλ) admits at least two positive solutions uλ, ûλ ∈ D+ and uλ ≤ ûλ.
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Proof. Let τ ∈ (λ, λ∗). From (50) we have that τ ∈ L and so we can find uτ ∈ Sτ ⊆ D+.
Then from Proposition 8 we know that we can find uλ ∈ Sλ ⊆ D+ such that

(51) uτ − uλ ∈ int C+.

Using this uλ ∈ Sλ ⊆ D+ and µ > ‖ξ‖∞, we introduce the following truncation-
perturbation of the reaction term for problem (Pλ):

(52) eλ(z, x) =

{
fλ(z, uλ(z)) + µuλ(z)p−1 if x ≤ uλ(z),

fλ(z, x) + µxp−1 if uλ(z) < x.

This is a Carathédory function. We set Eλ(z, x) =
∫ x

0
eλ(z, s)ds and consider the C1-

functional ϕ̃λ : W 1,p(Ω)→ R defined by

ϕ̃λ(u) =

∫
Ω

G(z,∇u)dz +
1

p

∫
Ω

[ξ(z) + µ]|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ −
∫

Ω

Eλ(z, u)dz

for all u ∈ W 1,p(Ω). From (52) it is clear that eλ(z, ·) has the same asymptotic behavior

as x → +∞ with the function f̂(z, ·). So, with minor modifications in the proof of
Proposition 4 we show that

(53) ϕ̃λ satisfies the C-condition.

Claim: We may assume that uλ ∈ D+ is a local minimizer of ϕ̃λ. Consider the following
truncation of eλ(z, ·):

(54) êλ(z, x) =

{
eλ(z, x) if x ≤ uτ (z),

eλ(z, uτ (z)) if uτ (z) < x.

This is a Carathédory function. We set Êλ(z, x) =
∫ x

0
êλ(z, s)ds and consider the C1-

functional ϕ̃∗λ : W 1,p(Ω)→ R defined by

ϕ̃∗λ(u) =

∫
Ω

G(z,∇u)dz +
1

p

∫
Ω

[ξ(z) + µ]|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ −
∫

Ω

Êλ(z, u)dz

for all u ∈ W 1,p(Ω). Evidently ϕ̃∗λ is coercive (see (54), (52)) and sequentially weakly
lower semicontinuous. So, we can find u∗λ ∈ W 1,p(Ω) such that

(55) ϕ̃∗λ(u
∗
λ) = inf[ϕ̃∗λ(u) : u ∈ W 1,p(Ω)].

From (55) we have

(ϕ̃∗λ)
′(u∗λ) = 0,

⇒ 〈A(u∗λ), h〉+

∫
Ω

(ξ(z) + µ)|u∗λ|p−2u∗λhdz +

∫
∂Ω

β(z)|u∗λ|p−2u∗λhdσ =

∫
Ω

êλ(z, u
∗
λ)hdz

(56)

for all h ∈ W 1,p(Ω).
In (56) first we choose h = (uλ − u∗λ)+ ∈ W 1,p(Ω). Then

〈A(u∗λ), (uλ − u∗λ)+〉+

∫
Ω

[ξ(z) + µ]|u∗λ|p−2u∗λ(uλ − u∗λ)+dz

+

∫
∂Ω

β(z)|u∗λ|p−2u∗λ(uλ − u∗λ)+dσ
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=

∫
Ω

[fλ(z, uλ) + µup−1
λ ](uλ − u∗λ)+dz (see (54), (52))

= 〈A(uλ), (uλ − u∗λ)+〉+

∫
Ω

[ξ(z) + µ]up−1
λ (uλ − u∗λ)+dz

+

∫
∂Ω

β(z)up−1
λ (uλ − u∗λ)+dσ (since uλ ∈ Sλ),

⇒ uλ ≤ u∗λ.

Also, in (56) we choose h = (u∗λ − uτ )+ ∈ W 1,p(Ω). Then

〈A(u∗λ), (u
∗
λ − uτ )+〉+

∫
Ω

[ξ(z) + µ](u∗λ)
p−1(u∗λ − uτ )+dz

+

∫
∂Ω

β(z)(u∗λ)
p−1(u∗λ − uτ )+dσ

=

∫
Ω

[fλ(z, uτ ) + µup−1
τ ](u∗λ − uτ )+dz (see (54), (52) and recall uλ ≤ uτ )

≤
∫

Ω

[fτ (z, uτ ) + µup−1
τ ](u∗λ − uτ )+dz (since λ < τ , see hypothesis H(f) (vi))

= 〈A(uτ ), (u
∗
λ − uτ )+〉+

∫
Ω

[ξ(z) + µ]up−1
τ (u∗λ − uτ )+dz

+

∫
∂Ω

β(z)up−1
τ (u∗λ − uτ )+dσ(since uτ ∈ Sτ ),

⇒ u∗λ ≤ uτ .

These facts and the nonlinear regularity theory of Lieberman [16], imply that

u∗λ = [uλ, uτ ] ∩D+.

If uλ 6= u∗λ, then this is the desired second positive solution of (Pλ) (see (54), (52)).
So, we have two positive solutions uλ, u

∗
λ ∈ D+, uλ ≤ u∗λ and we are done.

So, we assume that
u∗λ = uλ.

Note that
ϕ̃∗λ
∣∣
[0,uτ ]

= ϕ̃λ
∣∣
[0,uτ ]

(see (52), (54)).

From (51) and (55), we see that

uλ is a local C1(Ω)-minimizer of ϕ̃λ

⇒ uλ is a local W 1,p(Ω)-minimizer of ϕ̃λ.

This proves the Claim. From the proof of the Claim, we have that

(57) Kϕ̃λ ⊆ [uλ) ∩D+ = {u ∈ D+ : uλ(z) ≤ u(z) for all z ∈ Ω}.
From (57) we see that we may assume that

(58) Kϕ̃λ is finite.

Otherwise we already have an infinity of positive smooth solutions of (Pλ) (see (52),
(57)). So, we are done. On account of the Claim and (58), we can find ρ ∈ (0, 1) small
such that

(59) ϕ̃λ(uλ) < inf[ϕ̃λ(u) : ‖u− uλ‖ = ρ] = m̃λ.



PARAMETER DEPENDENCE FOR THE POSITIVE SOLUTIONS OF ROBIN PROBLEMS 21

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29). Hypothesis H(f) (ii)
and (52) imply that

(60) ϕ̃λ(tu)→ −∞ as t→ +∞.
Then (53), (59), (60) permit the use of Theorem 1 (the mountain pass theorem). So,
we can find ûλ ∈ W 1,p(Ω) such that

(61) ûλ ∈ Kϕ̃λ and m̃λ ≤ ϕ̃λ(ûλ).

From (57), (59), (61) we conclude that

ûλ ∈ D+ is a second positive solution of (Pλ), uλ 6= ûλ, uλ ≤ ûλ.

�

Next we check the admissibility of the critical parameter λ∗ ∈ (0,+∞) (that is,
whether λ∗ ∈ L).

Proposition 12. If hypotheses H(a), H(ξ), H(β), H(f) hold, then λ∗ ∈ L, that is,
L = (0, λ∗].

Proof. Let {λn}n∈N ⊆ (0, λ∗) and assume that λ→ (λ∗)− as n→ +∞. Let un ∈ Sλn ⊆
D+ for all n ∈ N. We have

(62) 〈A(un), h〉+

∫
Ω

ξ(z)up−1
n hdz +

∫
∂Ω

β(z)up−1
n hdσ =

∫
Ω

fλn(z, un)hdz

for all h ∈ W 1,p(Ω), all n ∈ N.
In (62) we choose h = un ∈ W 1,p(Ω). Then

(63) −
∫

Ω

(a(z,∇un),∇un)RNdz−
∫

Ω

ξ(z)upndz−
∫
∂Ω

β(z)upndσ+

∫
Ω

fλn(z, un)undz = 0

for all n ∈ N. From the proof of Proposition 7, we know that we can assume that these
solutions satisfy

(64)

∫
Ω

pG(z,∇un)dz +

∫
Ω

ξ(z)upndz +

∫
∂Ω

β(z)upndσ −
∫

Ω

pFλn(z, un)dz < 0

for all n ∈ N. Adding (63), (64) and using hypothesis H(a) (v), we obtain

(65)

∫
Ω

dλn(z, un)dz ≤M8 for some M8 > 0, all n ∈ N.

Using (65) and reasoning as in the Claim in the proof of Proposition 4, we show that

{un}n∈N ⊆ W 1,p(Ω) is bounded.

So, we may assume that

(66) un
w−→ u∗ in W 1,p(Ω) and un → u∗ in Lrλ∗ (Ω) and in Lp(∂Ω).

In (62) we choose h = un − u∗ ∈ W 1,p(Ω), pass to the limit as n → +∞ and use (66).
Then

lim
n→+∞

〈A(un), un − u∗〉 = 0,

⇒ un → u∗ in W 1,p(Ω) (see Proposition 2).(67)

Passing to the limit as n→ +∞ in (62) and using (67), we obtain
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〈A(u∗), h〉+

∫
Ω

ξ(z)up−1
∗ hdz +

∫
∂Ω

β(z)up−1
∗ hdσ =

∫
Ω

fλ∗(z, u∗)hdz for all h ∈ W 1,p(Ω)

⇒u∗ is a nonnegative solution of (Pλ∗).

We need to show that u∗ 6= 0. Then u∗ ∈ Sλ∗ ⊆ D+ and λ∗ ∈ L.
To this end, first note that

(68)
fλn(z, x) ≥ fλ1(z, x) ≥ ηλ1x

qλ1−1 − c16x
rλ1−1 for a.a. z ∈ Ω, all x ≥ 0, some c16 > 0

(see hypotheses H(f) (i), (v)).
Motivated by (68), we consider the following nonlinear auxiliary Robin problem

(69){
−div a(z,∇u(z)) + ξ+(z)|u(z)|p−2u(z) = ηλ1|u(z)|qλ1−2u(z)− c16|u(z)|rλ1−2u(z) in Ω,

∂u
∂na

+ β(z)|u|p−2u = 0 on ∂Ω.

If ξ+ ≡ 0 (that is ξ ≤ 0 for a.a. z ∈ Ω), then instead of ξ+ we use any positive
L∞(Ω)-function.

We consider C1-functional θ̂+ : W 1,p(Ω)→ R defined by

θ̂+(u) =

∫
Ω

G(z,∇u)dz+
1

p

∫
Ω

ξ+(z)|u|pdz+
1

p

∫
∂Ω

β(z)|u|pdσ− ηλ1
qλ1
‖u+‖qλ1qλ1

+
c16

rλ1
‖u+‖rλ1rλ1

for all u ∈ W 1,p(Ω). Since qλ1 < p < rλ1 , the functional is coercive. It is also sequentially
weakly lower semicontinuous. So, we can find ũ ∈ W 1,p(Ω) such that

(70) θ̂+(ũ) = inf[θ̂+(u) : u ∈ W 1,p(Ω)].

As in the proof of Proposition 7, exploiting the fact that qλ1 < p < rλ1 , we have that

θ̂+(ũ) < 0 = θ̂+(0),

⇒ ũ 6= 0.

From (70) we have

θ̂′+(ũ) = 0,

⇒ 〈A(ũ), h〉+

∫
Ω

ξ+(z)|ũ|p−2ũhdz +

∫
∂Ω

β(z)|ũ|p−2ũhdσ(71)

=

∫
Ω

[ηλ1(ũ
+)qλ1−1 − c16(ũ+)rλ1−1]hdz

for all h ∈ W 1,p(Ω).
Choosing h = −ũ− ∈ W 1,p(Ω) in (71), we obtain

ũ ≥ 0, ũ 6= 0.

So, problem (69) admits a positive solution ũ, which by the nonlinear regularity theory
of Lieberman [16] and the nonlinear maximum principle of Zhang [28] belong in D+

(that is, ũ ∈ D+).
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We will show that this positive solution ũ ∈ D+ of (69) is in fact unique. For this
purpose, we introduce the integral functional j : L1(Ω)→ R = R ∪ {+∞} defined by

j(u) =

{∫
Ω
G(z,∇u

1
q )dz + 1

p

∫
Ω
ξ+(z)u

p
q dz + 1

p

∫
∂Ω
β(z)u

p
q dσ if u ≥ 0, u

1
q ∈ W 1,p(Ω),

+∞ otherwise.

Using hypothesis H(a) (vi) and Lemma 1 of Diaz-Saá [6], as in Papageorgiou-Rǎdulescu
[22], we show that j(·) is convex (recall q < p, see hypothesis H(a) (vi)).

Suppose ṽ ∈ W 1,p(Ω) is another positive solution of (69). Again, we have

ṽ ∈ D+.

Hence, if dom j = {u ∈ L1(Ω) : j(u) < +∞} (the effective domain of j(·), then for |t|
small we have for all h ∈ C1(Ω)

ũq + th ∈ dom j and ṽq + th ∈ dom j.

Note that j(·) is Gâteaux differentiable at ũq and at ṽq in the direction h and using the
chain rule and the nonlinear Green’s identity (see, for example, Gasiński-Papageorgiou
[10], Theorem 2.4.53, p. 210), we have

j′(ũq)(h) =
1

q

∫
Ω

−div a(z,∇ũ) + ξ+(z)ũp−1

ũq−1
hdz =

∫
Ω

ηλ1ũ
qλ1−1 − c16ũ

rλ1−1

ũq−1
hdz

j′(ṽq)(h) =
1

q

∫
Ω

−div a(z,∇ṽ) + ξ+(z)ṽp−1

ṽq−1
hdz =

∫
Ω

ηλ1 ṽ
qλ1−1 − c16ṽ

rλ1−1

ṽq−1
hdz

for all h ∈ C1(Ω).
The convexity of j(·) implies the monotonicity of j′(·). Hence

0 ≤
∫

Ω

[
ηλ1

(
1

ũq−qλ1
− 1

ṽq−qλ1

)
− c16

(
ũrλ1−q − ṽrλ1−q

)]
(ũq − ṽq)dz

⇒ ũ = ṽ (since qλ1 < q < p < rλ1).

This proves the uniqueness of the positive solution ũ ∈ D+ of (69).
Now let n ∈ N. We will show that

(72) ũ ≤ u for all u ∈ Sλn .
Fix u ∈ Sλn and consider the Carathéodory function τ(z, x) defined by

(73) τ(z, x) =


0 if x < 0,

ηλ1x
qλ1−1 − c16x

rλ1−1 if 0 ≤ x ≤ u(z),

ηλ1u(z)qλ1−1 − c16u(z)rλ1−1 if u(z) < x.

We set T (z, x) =
∫ x

0
τ(z, s)ds and consider the C1-functional θ0 : W 1,p(Ω)→ R defined

by

θ0(u) =

∫
Ω

G(z,∇u)dz +
1

p

∫
Ω

ξ+(z)|u|pdz +
1

p

∫
∂Ω

β(z)|u|pdσ −
∫

Ω

τ(z, u)dz

for all u ∈ W 1,p(Ω). Evidently θ0(·) is coercive (see (73)) and sequentially weakly lower
semicontinuous. So, we can find û ∈ W 1,p(Ω) such that

θ0(û) = inf[θ0(u) : u ∈ W 1,p(Ω)] < 0 = θ0(0) (recall qλ1 < q < p < rλ1)

⇒ û 6= 0 and û ∈ Kθ0 .
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We have

θ′0(û) = 0,

⇒ 〈A(û), h〉+

∫
Ω

ξ+(z)|û|p−2ûhdz +

∫
∂Ω

β(z)|û|p−2ûhdσ =

∫
Ω

τ(z, û)hdz

for all h ∈ W 1,p(Ω).
First we choose h = −û− ∈ W 1,p(Ω) and obtain û ≥ 0. Next we choose h = (û−u)+ ∈

W 1,p(Ω). We have

〈A(û), (û− u)+〉+

∫
Ω

ξ+(z)ûp−1(û− u)+dz +

∫
∂Ω

β(z)ûp−1(û− u)+dσ

=

∫
Ω

[ηλ1u
qλ1−1 − c16u

rλ1−1](û− u)+dz (see (73))

≤
∫

Ω

fλn(z, u)(û− u)+dz

= 〈A(u), (û− u)+〉+

∫
Ω

ξ(z)up−1(û− u)+dz +

∫
∂Ω

β(z)up−1(û− u)+dσ

(since u ∈ Sλn),

≤ 〈A(u), (û− u)+〉+

∫
Ω

ξ+(z)up−1(û− u)+dz +

∫
∂Ω

β(z)up−1(û− u)+dσ

⇒ û ≤ u.

From these observations and the nonlinear regularity theory, we have

û ∈ [0, u] ∩D+

⇒ û is a positive solution of (69),

⇒ û = ũ,

⇒ (72) holds.

So, we have

ũ ≤ un for all n ≥ 1,

⇒ ũ ≤ u∗ (see (66))

⇒ u∗ ∈ Sλ∗ and so λ∗ ∈ L (that is, L = (0, λ∗]).

�

We summarize the work done in this section, with the following bifurcation-type
result.

Theorem 2. If hypotheses H(a), H(ξ), H(β), H(f) hold, then there exists λ∗ > 0 such
that

(a) for all λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions

uλ, ûλ ∈ D+, uλ ≤ ûλ, uλ 6= ûλ;

(b) for λ = λ∗ problem (Pλ) has at least one positive solution

u∗ ∈ D+;

(c) for λ > λ∗ problem (Pλ) has no positive solution.
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3. Minimal positive solutions

In this section we show that for every λ ∈ L ⊆ (0, λ∗] problem (Pλ) has a smallest
positive solution u∗λ ∈ D+. We also study the monotonicity and continuity properties
of the map λ→ u∗λ.

Proposition 13. If hypotheses H(a), H(ξ), H(β), H(f) hold, then for every λ ∈ L =
(0, λ∗] problem (Pλ) admits a smallest positive solution u∗λ ∈ D+.

Proof. We know that Sλ is downward directed, that is, given u1, u2 ∈ Sλ, we can find
u ∈ Sλ such that u ≤ u1, u ≤ u2 (see Papageorgiou-Rǎdulescu-Repovš [25], proof of
Proposition 9). Then invoking Lemma 3.10, p.178, of Hu-Papageorgiou [14], we can
find {un}n∈N ⊆ Sλ decreasing such that

inf Sλ = inf
n∈N

un.

From the proof of Proposition 12, we have

{un}n∈N ⊆ W 1,p(Ω) is bounded, ũ ≤ un for all n ∈ N.
So we may assume that

(74) un
w−→ u∗λ in W 1,p(Ω) and un → u∗λ in Lrλ(Ω) and in Lp(∂Ω), ũ ≤ u∗λ.

For every n ∈ N, we have

(75) 〈A(un), h〉+

∫
Ω

ξ(z)up−1
n hdz +

∫
∂Ω

β(z)up−1
n hdσ =

∫
Ω

fλ(z, un)hdz

for all h ∈ W 1,p(Ω).
In (75) we choose h = un−u∗λ ∈ W 1,p(Ω), pass to the limit as n→ +∞ and use (74).

Then

lim
n→+∞

〈A(un), un − u∗λ〉 = 0,

⇒ un → u∗λ in W 1,p(Ω) (see Proposition 2).(76)

If in (75) we pass to the limit as n→ +∞ and use (76), then

〈A(u∗λ), h〉+

∫
Ω

ξ(z)(u∗λ)
p−1hdz +

∫
∂Ω

β(z)(u∗λ)
p−1hdσ =

∫
Ω

fλ(z, u
∗
λ)hdz

for all h ∈ W 1,p(Ω)

ũ ≤ u∗λ.

Therefore u∗λ ∈ Sλ and u∗λ = inf Sλ. �

Consider the map ê : L = (0, λ∗]→ C1(Ω) defined by

ê(λ) = u∗λ.

In the next proposition we establish the monotonicity and continuity properties of
this map.

Proposition 14. If hypotheses H(a), H(ξ), H(β), H(f) hold, then the map ê : L =
(0, λ∗]→ C+ defined above is

• strictly monotone in the sense that

λ < τ ∈ L ⇒ u∗τ − u∗λ ∈ D̂+;
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• ê(·) is left continuous, that is if {λn, λ}n∈N ⊆ L, then

λn → λ− ⇒ u∗λn → u∗λ in C1(Ω).

Proof. Let τ ∈ L and λ < τ (hence λ ∈ L, see Proposition 7). On account of Proposition
8 we can find uλ ∈ Sλ ⊆ D+ such that

u∗τ − uλ ∈ D̂+,

⇒ u∗τ − u∗λ ∈ D̂+.

This proves the strict monotonicity of ê(·).
Next let {λn, λ}n∈N ⊆ L and assume that λn → λ−. From the first part of the

proof we know that {u∗λn}n∈N ⊆ D+ is increasing. In addition {u∗λn}n∈N ⊆ W 1,p(Ω) is
bounded. The nonlinear regularity theory of Lieberman [16] implies that there exist
γ ∈ (0, 1) and M9 > 0 such that

u∗λn ∈ C
1,γ(Ω) and ‖u∗λn‖C1,γ(Ω) ≤M9 for all n ∈ N.

The compact embedding of C1,γ(Ω) into C1(Ω) and the monotonicity of {u∗λn}n∈N imply
that for the original sequence we have

(77) u∗λn → ũ∗λ in C1(Ω).

Evidently ũ∗λ ∈ Sλ. Suppose that ũ∗λ 6= u∗λ. Then we can find z0 ∈ Ω such that

u∗λ(z0) < ũ∗λ(z0)

⇒ u∗λ(z0) < u∗λn(z0) for all n ≥ n0 (see (77)),

a contradiction to the strict monotonicity of ê. Therefore ũ∗λ = u∗λ and this proves the
left continuity of the map ê(·). �

We can state the following result which complements Theorem 2.

Theorem 3. If hypotheses H(a), H(ξ), H(β), H(f) hold, then for every λ ∈ L = (0, λ∗]
problem (Pλ) admits a smallest positive solution u∗λ ∈ D+ and the map ê : L = (0, λ∗]→
C1(Ω) is

• strictly monotone, that is λ < τ ∈ L ⇒ u∗λ − u∗τ ∈ D̂+;
• ê(·) is left continuous, that is {λn, λ}n∈N ⊆ L and λn → λ− ⇒ u∗λn → u∗λ in C1(Ω).
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