The exponent $\mbox{exp}(A)$ of a PI-algebra $A$ in characteristic zero is an integer measuring the exponential rate of growth of the sequence of codimensions of $A$ (\cite{gz1,gz2}). In this paper we study the exponential rate of growth of the sequences of proper codimensions and Lie codimensions of an associative PI-algebra. We prove that the corresponding proper exponent exists for all PI-algebras, except for some algebras of exponent two strictly related to the Grassmann algebra. We also prove that the Lie exponent exists for any finitely generated PI-algebra. The value of both exponents is always equal to $\mbox{exp}(A)$ or $\mbox{exp}(A)-1$.
GIAMBRUNO A, ZAICEV M (2008). Proper identities, Lie identities and exponential codimension growth. JOURNAL OF ALGEBRA, 320(5), 1933-1962.
Proper identities, Lie identities and exponential codimension growth
GIAMBRUNO, Antonino;
2008-01-01
Abstract
The exponent $\mbox{exp}(A)$ of a PI-algebra $A$ in characteristic zero is an integer measuring the exponential rate of growth of the sequence of codimensions of $A$ (\cite{gz1,gz2}). In this paper we study the exponential rate of growth of the sequences of proper codimensions and Lie codimensions of an associative PI-algebra. We prove that the corresponding proper exponent exists for all PI-algebras, except for some algebras of exponent two strictly related to the Grassmann algebra. We also prove that the Lie exponent exists for any finitely generated PI-algebra. The value of both exponents is always equal to $\mbox{exp}(A)$ or $\mbox{exp}(A)-1$.File | Dimensione | Formato | |
---|---|---|---|
Giambruno,Zaicev-2008-JA.pdf
Solo gestori archvio
Dimensione
281.96 kB
Formato
Adobe PDF
|
281.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Giambruno,Zaicev-2008-JA.pdf
Solo gestori archvio
Dimensione
281.96 kB
Formato
Adobe PDF
|
281.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Giambruno,Zaicev-2008-JA.pdf
accesso aperto
Dimensione
281.96 kB
Formato
Adobe PDF
|
281.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.