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Abstract

The exponent exp(A) of a PI-algebra A in characteristic zero is an integer and measures the exponential
rate of growth of the sequence of codimensions of A [A. Giambruno, M. Zaicev, On codimension growth
of finitely generated associative algebras, Adv. Math. 140 (1998) 145–155; A. Giambruno, M. Zaicev,
Exponential codimension growth of P.I. algebras: An exact estimate, Adv. Math. 142 (1999) 221–243].
In this paper we study the exponential rate of growth of the sequences of proper codimensions and Lie
codimensions of an associative PI-algebra. We prove that the corresponding proper exponent exists for all
PI-algebras, except for some algebras of exponent two strictly related to the Grassmann algebra. We also
prove that the Lie exponent exists for any finitely generated PI-algebra. The value of both exponents is
always equal to exp(A) or exp(A) − 1.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let A be an associative PI-algebra over a field F of characteristic zero, F 〈X〉 the free alge-
bra on a countable set X = {x1, x2, . . .} and Id(A) the T-ideal of F 〈X〉 of polynomial identities
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of A. Since in characteristic zero all identities of A are consequences of the multilinear ones, an
effective way of measuring the identities satisfied by A is provided by the sequence of codimen-
sions cn(A), n = 1,2, . . . . Recall that if Pn is the space of multilinear polynomials in x1, . . . , xn

then cn(A) = dimF Pn/(Pn ∩ Id(A)). It is well known that since A satisfies a non-trivial identity,
this sequence is exponentially bounded [18], i.e., cn(A) � dn, for some real number d . Moreover
it was recently shown that

exp(A) = lim
n→∞

n
√

cn(A)

exists and is an integer called the exponent of the PI-algebra A [8,9].
Two more numerical sequences can be naturally associated to a T-ideal, the sequence of proper

codimensions and the sequence of Lie codimensions. They are defined as follows.
If we consider A as a Lie algebra under the Lie bracket [a, b] = ab − ba, we can study its

Lie polynomial identities; if Vn denotes the space of multilinear Lie polynomials in the first n

variables, then cL
n (A) = dimVn/(Vn ∩ Id(A)), n = 1,2, . . . , is the sequence of Lie codimensions

of A.
On the other hand, recall that a polynomial is proper if it is a linear combination of products

of (long) Lie commutators; the relevance of these polynomials is strengthened by the property
that any T-ideal of identities of an algebra with 1 can be generated by its proper polynomials
[4, Proposition 4.3.3]. If Γn denotes the space of multilinear proper polynomials in the first n

variables, then c
p
n (A) = dimΓn/(Γn ∩ Id(A)), n = 1,2, . . . , is the sequence of proper codimen-

sions of A.
It is well known (see for instance [7]) that if A is any algebra, the above three sequences are

related by the inequalities

cL
n (A) � c

p
n (A) � cn(A) (1)

for all n � 1. Now, for any exponentially bounded non-negative sequence αn, n = 1,2, . . . , one
can construct the bounded sequence n

√
αn, n = 1,2, . . . , and compute its upper and lower limit.

Hence, since for any PI-algebra A, cn(A), n = 1,2, . . . , is exponentially bounded, we define the
following real numbers:

expL(A) = lim inf
n→∞

n

√
cL
n (A), expL(A) = lim sup

n→∞
n

√
cL
n (A),

expp(A) = lim inf
n→∞

n

√
c
p
n (A), expp(A) = lim sup

n→∞
n

√
c
p
n (A),

called the lower and upper Lie exponent and the lower and upper proper exponent of the alge-
bra A, respectively. In case of equality, expL(A) = expL(A) = expL(A) will be called the Lie
exponent of A. Similarly expp(A) = expp(A) = expp(A) will be the proper exponent of A.

It is an open question if the proper exponent and the Lie exponent exist for an arbitrary PI-
algebra. About positive results, in [20] it was proved that for any finite dimensional Lie algebra
expL(A) exists and is an integer. On the other hand it is known that in case of PI-Lie algebras, the
sequence of codimensions can have an overexponential growth (see [17]). Even if the sequence
of Lie codimensions is exponentially bounded, the exponential rate of growth can be non-integer
for infinite dimensional finitely generated algebras [16].
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In this paper we shall prove that if A is a finitely generated PI-algebra, expL(A) and expp(A)

both exist and coincide with exp(A) or exp(A) − 1.
For infinitely generated PI-algebras the same result will be proved for a wide class of algebras

and it will be shown that it does not hold in general. In fact, it can be shown that if G is the
infinite dimensional Grassmann algebra, B a finite dimensional algebra with Jacobson radical of
codimension 1 and N a nilpotent algebra, then any algebra of the type A = G ⊕ B ⊕ N is such
that expp(A) does not exist.

Here we shall prove that if A is a PI-algebra with exp(A) = d , then expp(A) exists, is an
integer and expp(A) = d or d − 1, unless exp(A) = 2 and A is an algebra of the type above.

2. Finitely generated algebras

Throughout F will be a field of characteristic zero and A an F -algebra satisfying a non-trivial
polynomial identity.

Let F̄ be the algebraic closure of F . If we regard Ā = A ⊗F F̄ as an algebra over F̄ , it can
be easily shown that cn(A) = cn(Ā) (see [8] or [12]). The same conclusion holds for cL

n (A)

and c
p
n (A). Therefore for our purpose we may assume that F is algebraically closed.

We start by observing that since exp(A) exists, then from (1) we obtain

expL(A) � expp(A) � exp(A). (2)

Also, in [1] it was shown that if A is any PI-algebra with 1, then

expp(A) = exp(A) − 1. (3)

In this section we shall prove the existence of expL(A) and expp(A) for any finitely generated
PI-algebra A. We shall also find their precise value.

We start by remarking that if exp(A) � 1 then cn(A) is polynomially bounded. In this case
the proper exponent and the Lie exponent always exist. In fact we have the following

Proposition 1. Let A be a PI-algebra whose codimensions are polynomially bounded. Then the
Lie and the proper exponent of A exist and are integers. If exp(A) = 0, i.e., A is nilpotent then
expL(A) = expp(A) = 0. If exp(A) = 1 then expL(A) = expp(A) = 0 or 1.

Proof. For a nilpotent algebra the statement is obvious. Let exp(A) = 1. Since c
p
n (A) � cn(A)

then

lim sup
n→∞

n

√
c
p
n (A) � 1.

Hence it is enough to check that for n large enough, either c
p
n (A) = 0 always holds or

c
p
n (A), cL

n (A) > 0 always holds.
Recall that by [12, Theorem 7.2.12], A has the same identities as a direct sum B1 ⊕ · · · ⊕ Bm

where the Bi ’s are finite dimensional algebras with Jacobson radical of codimension at most one.
If B1, . . . ,Bm are all nilpotent, then exp(B1 ⊕· · ·⊕Bm) = 0, a contradiction. Let B be a finite

dimensional algebra with Jacobson radical J and dimB/J = 1. Suppose that B is an algebra
with 1. Since any Lie monomial vanishes if we replace at least one variable with 1, then cL(B) =
n
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c
p
n (B) = 0 for all n � N where JN = 0. Let now B be a non-unitary algebra. Then B = F + J

and we consider the left and right multiplication by the unit 1 ∈ F on J . As a vector space J can
be decomposed into the sum

J = J11 ⊕ J10 ⊕ J01 ⊕ J00,

where 1 · a = 0 if a ∈ J01 + J00 and 1 · a = a if a ∈ J10 + J11. Similarly a · 1 = 0 if a ∈ J10 + J00
and a · 1 = a if a ∈ J01 + J11.

If 0 �= a ∈ J01 then the left-normed commutator [a,1, . . . ,1] = a is non-zero, hence
[x1, . . . , xn] is not an identity of B . Similarly, if 0 �= a ∈ J10 then [a,1, . . . ,1] = ±a �= 0,
and [x1, . . . , xn] is again a non-identity of B . In other words, if J10 ⊕ J01 �= 0 then c

p
n (B) �

cL
n (B) � 1 for all n � 2. But in case J10 ⊕ J01 = 0 we have the decomposition B = C ⊕ J00, the

sum of two two-sided ideals where J00 is nilpotent and C = F + J11 is a unitary algebra with
1-dimensional maximal semisimple subalgebra. In this case as before cL

n (B) = c
p
n (B) = 0 for all

n � N where JN = 0.
In conclusion, we have that either cL

n (B1 ⊕ · · · ⊕ Bm) = c
p
n (B1 ⊕ · · · ⊕ Bm) = 0 for all n

large enough or c
p
n (Bj ) � cL

n (Bj ) � 1 for some subalgebra Bj , and in the latter case expL(B1 ⊕
· · · ⊕ Bm) = expp(B1 ⊕ · · · ⊕ Bm) = 1. �

At the light of the previous proposition we may assume that the PI-algebra A is such that
exp(A) > 1. Recall that by a result of Kemer [14], if A is finitely generated, there exists a finite
dimensional algebra D such that Id(A) = Id(D). In particular A and D have the same proper
identities and the same Lie identities. Therefore without lost of generality, we may assume that
A is a finite dimensional algebra.

But then, since exp(A) > 1, by [10] (see also [12]) there exists a subalgebra B of A such that
B ∼= UT(t1, . . . , tk), an upper block matrix algebra. Recall that

UT(t1, . . . , tk) =

⎛
⎜⎜⎜⎜⎝

A1 Q12 · · · Q1k

A2
. . .

...

. . . Qk−1,k

0 Ak

⎞
⎟⎟⎟⎟⎠ , (4)

where, for every 1 � i � k, Ai = Mti (F ) is the algebra of ti × ti matrices over F , and the Qij are
block matrices over F of corresponding size. Moreover exp(A) = exp(B) = t = t2

1 + · · · + t2
k .

As we mentioned in the introduction, in [20] it was proved that for any finite dimensional
Lie algebra C, expL(C) exists and is an integer. We next describe how the Lie exponent can be
computed.

By the Ado–Ivasawa theorem the Lie algebra C decomposes as

C = L + R,

where L is a maximal semisimple subalgebra of C and R is the solvable radical. Let
I1, J1, . . . , Iq, Jq be Lie ideals of C. We say that I1, J1, . . . , Iq, Jq satisfy the condition (∗)
if
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• Jr ⊆ Ir and Ir/Jr is a non-zero irreducible C-module in the adjoint representation, for any
r = 1, . . . , q;

• for any irreducible L-submodules P1, . . . ,Pq such that Ir = Jr ⊕ Pr , r = 1, . . . , q , there
exist p1, . . . , pq � 0 such that

[[P1,L, . . . ,L︸ ︷︷ ︸
p1

], . . . , [Pq,L, . . . ,L︸ ︷︷ ︸
pq

]] �= 0.

Then according to [20], the Lie exponent of C is equal to

max

{
dim

C

AnnC( I1
J1

) ∩ · · · ∩ AnnC(
Iq

Jq
)

}
,

where AnnC( I
J
) = {a ∈ C | [a, I ] ⊆ J } and we consider only ideals I1, J1, . . . , Iq, Jq satisfying

the condition (∗).
We now apply the above to the algebra B , considered as a Lie algebra.
If k = 1, then B is isomorphic to the algebra Mt1(F ) and expL(B) = t2

1 − 1 = t − 1 (see [7]).
In fact, as a Lie algebra, we can decompose Mt1(F ) = sln(F )⊕Z, where Z is the 1-dimensional
center of B . Hence

expL(A) � expL(B) = t − 1. (5)

Now let k � 2 and identify the algebra B with the algebra UT(t1, . . . , tk) given in (4). For
r = 1, . . . , k − 1, set

Ir =
⊕

r+1�β�k
1�α�r

Qαβ, Jr =
⊕

r+1�β�k
(α,β) �=(r,r+1)

1�α�r

Qαβ.

Then I1, J1, . . . , Ik−1, Jk−1 are Lie ideals of B and for r = 1, . . . , k − 1, we have the decompo-
sition Ir = Jr ⊕ Qr,r+1 with Qr,r+1 an irreducible B-module.

If we set Q =∑1�i<j�k Qij , then clearly [Q,Ir ] ⊆ Jr and this says that Q annihilates Ir/Jr ,
for all r = 1, . . . , k − 1. It follows that

AnnB

(
I1

J1

)
∩ · · · ∩ AnnB

(
Ik−1

Jk−1

)
= Q ⊕ AnnA1⊕···⊕Ak

(Q12 ⊕ · · · ⊕ Qk−1,k). (6)

The annihilator AnnA1⊕···⊕Ak
(Q12 ⊕ · · · ⊕ Qk−1,k) is the centralizer of Q12 ⊕ · · · ⊕ Qk−1,k in

A1 ⊕ · · ·⊕ Ak , i.e., the space of scalar matrices. Therefore the codimension of AnnB( I1
J1

)∩ · · · ∩
AnnB(

Ik−1
Jk−1

) in B equals dim(A1 ⊕ · · · ⊕ Ak) − 1 = t − 1 and we obtain that

expL(B) � t − 1. (7)

If we now assume that A is an algebra with 1 then, by combining (3), (5) and (7) we get
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t − 1 � expL(A) = expL(A) � expp(A) � expp(A) � exp(A) − 1 = t − 1.

Hence expp(A) = expL(A) = t − 1 and this proves the following

Proposition 2. Let A be a finite dimensional algebra with 1. Then expp(A) and expL(A) exist
and are integers. Moreover

expL(A) = expp(A) = exp(A) − 1.

Given an algebra B without a unit element, we denote by B� the algebra obtained from B by
adjoining a unit element. We have the following

Lemma 1. For a finite dimensional algebra B we have exp(B�) = exp(B) + 1 or exp(B).

Proof. Let B = B1 ⊕· · ·⊕Bm +J be the Wedderburn–Malcev decomposition of the algebra B ,
where B1 ⊕ · · · ⊕ Bm is a maximal semisimple subalgebra with simple summands B1, . . . ,Bm,
and J is the Jacobson radical of B . Then by [8],

exp(B) = max dim(Br1 ⊕ · · · ⊕ Brk ),

where Br1 , . . . ,Brk ∈ {B1, . . . ,Bm} are distinct and satisfy Br1JBr2J · · ·JBrk �= 0.

It is easily seen that B1 ⊕ · · · ⊕ Bm ⊕ F is a maximal semisimple subalgebra of B�. Hence it
follows that exp(B�) equals either exp(B) or exp(B) + 1. �

We can now prove the existence of the Lie exponent and of the proper exponent for any finitely
generated PI-algebra.

Theorem 1. Let A be a finitely generated PI-algebra. Then

1) expL(A) and expp(A) exist and are integers;
2) expL(A) = expp(A) = exp(A) or exp(A) − 1;
3) if A is a unitary algebra, then expL(A) = expp(A) = exp(A) − 1.

Proof. As we mentioned at the beginning of the section we may assume that F is algebraically
closed. Moreover there exists a finite dimensional algebra B such that Id(A) = Id(B). If B is a
unitary algebra, then the conclusion of the theorem follows from the previous proposition.

Suppose now that B is not a unitary algebra and consider B�, the algebra obtained by adjoining
a unit element to B . Clearly B and B� have the same Lie and proper identities. Hence cL

n (B) =
cL
n (B�) and c

p
n (B) = c

p
n (B�). But then by Proposition 2, expL(B) and expp(B) exist and also

expL(B) = expp(B) = exp(B�) − 1. By Lemma 1 we then obtain that

expL(B) = expp(B) = exp(B) or exp(B) − 1.

In case A is a finitely generated PI-algebra with 1, then the conclusion 3) of the theorem follows
from (3). �
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We close this section with some examples showing that the equalities expp(A) = exp(A) and
expp(A) = exp(A) − 1 can actually occur.

Consider first the algebra A = Mk(F) of k × k matrices over F . Then by [12], exp(A) = k2

and expL(A) = k2 − 1 [7]. Hence expL(A) = expp(A) = exp(A) − 1. This conclusion also fol-
lows from Theorem 1.

Example 1. Let G be the infinite dimensional Grassmann algebra over F . Recall that G is the al-
gebra generated by the elements e1, e2, . . . , subject to the conditions eiej + ej ei = 0 for i, j � 1.
If

A =
(

G G

0 0

)
,

then by [1], expL(A) = exp(A) = 2. Hence also expp(A) = 2.
We next give an example of a finite dimensional algebra A with the property expp(A) =

exp(A).

Example 2. We let A be the algebra of (k + 1) × (k + 1) matrices with zero last row. Hence

A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

a11 . . . a1,k+1

...
...

ak1 . . . ak,k+1

0 . . . 0

⎞
⎟⎟⎟⎟⎠
∣∣∣ aij ∈ F

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

By [20], expL(A) = k2 and by [9] exp(A) = k2. Hence also expp(A) = k2.

3. Hook partitions

In order to study the infinite dimensional case, we shall make use of a standard approach
based on the action of the symmetric group on multilinear polynomials (see for instance [12,
Chapter 2]). In this section we shall obtain some technical results concerning the dimensions of
the irreducible modules for the symmetric group. We refer the reader to [13] for the representation
theory of the symmetric group.

Let Sn be the symmetric group acting on 1, . . . , n. Since Sn is finite and charF = 0, any
finite dimensional representation of Sn is completely reducible and any irreducible representation
corresponds, up to isomorphism, to a partition λ = (λ1, . . . , λr) of n. Recall that, given a partition
λ = (λ1, . . . , λr ) � n, one can consider the corresponding Young diagram Dλ and, if we fill up
the boxes of Dλ with the integers 1, . . . , n, we get a Young tableau Tλ of shape λ.

Recall also that, given a tableau Tλ, if RTλ and CTλ denote the row-stabilizer and column-
stabilizer subgroups of Sn, then the element

eTλ =
∑

σ∈RTλ
τ∈C

(sgn τ)στ
Tλ
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is an essential idempotent of the group algebra FSn i.e., e2
Tλ

= αeTλ , for some 0 �= α ∈ F , and
FSneTλ is an irreducible left FSn-module. Moreover, if Tλ and Tμ are two Young tableaux, then
FSneTλ is isomorphic to FSneTμ if and only if Tλ and Tμ are of the same shape i.e., λ = μ.

For a partition λ � n we denote by λ′ the conjugate partition of λ. Recall that λ′ =
(λ′

1, . . . , λ
′
s) � n, where λ′

1, . . . , λ
′
s are the lengths of the columns of Dλ. Thus the diagram Dλ′

is obtained from Dλ by flipping Dλ along its main diagonal.
Given a finite dimensional Sn-module M , we denote its character by χ(M). In case M ∼=

FSneTλ we write χ(M) = χλ. Hence, any character χ(M) has a decomposition of the type

χ(M) =
∑
λ�n

mλχλ,

where the integers mλ are called the multiplicities of χλ in χ(M). In particular, the dimension
dimM = degχ(M) equals

degχ(M) =
∑
λ�n

mλdλ,

where dλ = degχλ is the dimension of the irreducible Sn-module corresponding to λ � n.
We also recall the hook formula for the dimension dλ of the irreducible Sn-module with char-

acter χλ. Let (i, j) be the box of Dλ lying at the intersection of the ith row and the j th column
of Dλ. We define the hook number hij (λ) of (i, j) as hij (λ) = λi + λ′

j − i − j + 1, where λ′ is
the conjugate partition of λ. Then

dλ = n!∏
i,j hij (λ)

.

Below we shall use the notation H(k, l) for the so-called infinite hook with k infinite rows and
l infinite columns. Actually H(k, l) is the union of all partitions λ whose (k + 1)th row is of
length at most l, i.e.,

H(k, l) =
⋃
n�1

{
λ = (λ1, λ2, . . .) � n

∣∣ λk+1 � l
}
.

Although we shall consider only infinitely generated PI-algebras, for convenience we allow l

to be zero in H(k, l). In this case H(k,0) is an infinite (horizontal) strip of height k > 0.
In the next lemma, in order to compute the degrees dλ, we shall estimate the product of all

hook numbers.

Lemma 2. Let n > 100 and let μ = (μ1, . . . ,μk) � n. Then the product
∏

i,j hij (μ) of the hook
numbers of μ satisfies

μ1
μ1 · · ·μk

μk

en
�
∏
i,j

hij (μ) � μ1
μ1 · · ·μk

μk

en
nk2+k.
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Proof. The product of the hook numbers of the ith row of μ satisfies

μi ! �
μi∏

j=1

hij (μ) � k(k + 1) · · · (k + μi − 1) � (μi + k)! � nkμi !.

Hence

μ1! · · ·μk! �
∏
i,j

hij (μ) � nk2
μ1! · · ·μk!. (8)

Recall now that by Stirling formula (see [19])

n! = √
2πn

(
n

e

)n

e
θn
12n

for some 0 � θn � 1. It follows that for n � 100,

(
n

e

)n

� n! � n

(
n

e

)n

.

Therefore (
μ1

e

)μ1

· · ·
(

μk

e

)μk

� μ1! · · ·μk! � nk

(
μ1

e

)μ1

· · ·
(

μk

e

)μk

.

If we write (
μ1

e

)μ1

· · ·
(

μk

e

)μk

= μ1
μ1 · · ·μk

μk

en
,

we obtain that

μ1
μ1 · · ·μk

μk

en
� μ1! · · ·μk! � nk μ1

μ1 · · ·μk
μk

en
.

We now apply the above inequalities to (8) and we obtain the desired result. �
In order to estimate the dimension of an irreducible Sn-module it is convenient to introduce

the following function.

Definition 1. Let m � 2 and let

Φ(x1, . . . , xm) = 1

x
x1
1 · · ·xxm

m

be the function defined for all real numbers x1, . . . , xm, 0 < x1, . . . , xm < 1, such that x1 +
· · · + xm = 1.
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Remark 1. The function Φ is continuous and has only one maximum for x1 = · · · = xm = 1
m

where Φ( 1
m

, . . . , 1
m

) = m. If xm � x1, . . . , xm−1 and its value xm = a is fixed then Φ(x1, . . . , xm)

takes the maximal value when x1 = · · · = xm−1 and takes the minimal value when x2 =
· · · = xm = a.

Lemma 3. Let xm � x1, . . . , xm−1. If xm � α
m

for some α < 1 then there exists δ > 0 such that

Φ(x1, . . . , xm) < m − δ. If xm � 1
2m

then Φ(x1, . . . , xm) � √
m.

Proof. First we prove the upper bound in case xm = α
m

. Denote ε = α
m

. By Remark 1 we have

Φ(x1, . . . , xm) � Φ

(
1 − ε

m − 1
, . . . ,

1 − ε

m − 1
, ε

)
=
(

m − 1

1 − ε

)1−ε

· 1

εε
= A.

Since 1 − ε = m−α
m

, we obtain

A =
(

m − 1

m − α

)m−α
m · mm−α

m

(
m

α

) α
m = b · m,

where

b =
(

m − 1

m − α

)m−α
m
(

1

α

) α
m

.

Consider the function

g(x) =
(

m − 1

m − x

)m−x
m
(

1

x

) x
m

.

It is easy to observe that its derivative is positive if x � 1 and g(1) = 1. Hence b = g(α) < 1. It
follows that bm � m − δ for some δ > 0 and we are done in case xm = α

m
.

Suppose now that xm < α
m

. Then xm = β
m

where β < α and as before Φ(x1, . . . , xm) � cm

where c = g(β). Since g′(x) > 0 for x � 1 and β < α then

Φ

(
x1, . . . , xm−1,

α

m

)
� Φ

(
x1, . . . , xm−1,

β

m

)
� m − δ

and we have proved the upper bound.
Let now xm = 1

2m
. Then by Remark 1

Φ(x1, . . . , xm) � Φ

(
m + 1

2m
,

1

2m
, . . . ,

1

2m

)
= (2m)

m−1
2m

(
2m

m + 1

)m+1
2m

= 2m

(
1

m + 1

)m+1
2m

>
2m√
m + 1

>
√

m

and we have proved the second inequality for xm = 1 .
2m
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Suppose now that xm = β > 1
2m

. Then again by Remark 1

Φ(x1, . . . , xm) � Φ
(
1 − (m − 1)β,β, . . . , β

)= 1

(1 − (m − 1)β)1−(m−1)ββ(m−1)β
.

One can easily check that the function

f (x) = 1

(1 − kx)1−kxxkx

has positive derivative if x < 1 − kx. Since β < 1 − (m − 1)β and

1

2m
< 1 − (m − 1)

1

2m
= m + 1

2m

we obtain

Φ(x1, . . . , xm−1, β) � Φ

(
x1, . . . , xm−1,

1

2m

)
�

√
m. �

Let now λ � n, λ ∈ H(k, l), k + l � 2, and let λ′ be the conjugate partition of λ. We assume
that λ1, . . . , λk > l and λ′

1, . . . , λ
′
l > k. Define n̄ = n − kl,

λ̄ = (λ̄1, . . . , λ̄k), and λ̄◦ = (λ̄◦
1, . . . , λ̄

◦
l

)
,

where λ̄i = λi − l, 1 � i � k, and λ̄◦
i = λ′

i − k, 1 � i � l.

Since λ̄1
n̄

+ · · · + λ̄k

n̄
+ λ̄◦

1
n̄

+ · · · + λ̄◦
l

n̄
= 1, then we make the following

Definition 2. Let λ � n, λ ∈ H(k, l), k + l � 2. Then we define

Φ(λ) = 1

( λ̄1
n̄

)
λ̄1
n̄ · · · ( λ̄k

n̄
)

λ̄k
n̄ (

λ̄◦
1
n̄

)
λ̄◦

1
n̄ · · · ( λ̄◦

l

n̄
)

λ̄◦
l
n̄

.

Lemma 4. Let λ ∈ H(k, l), k+ l � 2, and suppose that λk,λ
′
l � 2n

3(k+l)
. Then, for n large enough,

1

(k + l)kl

1

n(k+l)3 Φ(λ)n � dλ � nkl+1

(
√

k + l)kl
Φ(λ)n.

Proof. Split the diagram of λ into three areas as shown in the figure below and let
∏

1,
∏

2,
∏

3
be the products of the hook numbers of the areas 1, 2 and 3, respectively. In case l = 0 we set∏ =∏ = 0.
2 3
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Notice that according to our previous definitions,
∏

1 =∏hij (λ̄), is the product of the hook
numbers of the partition λ̄ and

∏
2 = ∏hij (λ̄

◦), is the product of the hook numbers of the
partition λ̄◦. Since

∏
3 � nkl , we obtain that

1

nkl
� n(n − 1) · · · (n − kl + 1)∏

3
� nkl. (9)

Recalling that n̄ = n − kl and taking into account the above inequality (9) and Lemma 2 we get

en̄n̄!
nk2+knl2+lnkl λ̄

λ̄1
1 · · · λ̄λ̄k

k λ̄◦
1
λ̄◦

1 · · · λ̄◦
l

λ̄◦
l

� dλ = n!∏
1
∏

2
∏

3
� nklen̄n̄!

λ̄
λ̄1
1 · · · λ̄λ̄k

k λ̄◦
1
λ̄◦

1 · · · λ̄◦
l

λ̄◦
l

.

Since by Stirling formula ( n̄
e
)n̄ � n̄! � n̄( n̄

e
)n̄, we obtain

n̄n̄

n(k+l)3
λ̄

λ̄1
1 · · · λ̄λ̄k

k λ̄◦
1
λ̄◦

1 · · · λ̄◦
l

λ̄◦
l

� dλ � nkl+1n̄n̄

λ̄
λ̄1
1 · · · λ̄λ̄k

k λ̄◦
1
λ̄◦

1 · · · λ̄◦
l

λ̄◦
l

.

Recalling the definition of Φ(λ), we have that

n̄n̄

λ̄
λ̄1
1 · · · λ̄λ̄k

k λ̄◦
1
λ̄◦

1 · · · λ̄◦
l

λ̄◦
l

= Φ(λ)n̄,

hence

1

n(k+l)3 Φ(λ)n̄ � dλ � nkl+1Φ(λ)n̄. (10)

Now, n̄ = n − kl and by Remark 1, Φ(λ) � k + l. Since λk,λ
′
l � 2n

3(k+l)
then, for n large enough,

λ̄k, λ̄
◦
l satisfy λ̄k

n̄
,

λ̄◦
l

n̄
� 1

2(k+l)
. Therefore applying Lemma 3 we obtain

1

(k + l)kl

1

n(k+l)3 Φ(λ)n � 1

n(k+l)3 Φ(λ)−klΦ(λ)n � dλ � nkl+1

(
√

k + l)kl
Φ(λ)n,

the desired conclusion. �
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Lemma 5. Let 0 < n1 < n2 < · · · be a sequence of integers and let λ(1) � n1, λ(2) � n2, . . . be

partitions. If there exist k, l such that λ(j) ⊆ H(k, l) and λ(j)k � 2nj

3(k+l)
or λ(j)′l � 2nj

3(k+l)
, for

all j = 1,2, . . . , then

lim sup
j→∞

nj
√

dλ(j) < k + l.

Proof. As in the proof of Lemma 4 (see (10)) we have

dλ(j) � nkl+1
j Φ

(
λ(j)
)nj −kl

.

Since λ(j)k or λ(j)′l do not exceed
2nj

3(k+l)
one can show that λ̄(j)k

n̄j
or

λ̄(j)◦l
n̄j

are bounded by 3
4(k+l)

,
for nj large enough. Hence we can write

Φ
(
λ(j)
)= Φ(x1, . . . , xk+l )

for some x1, . . . , xk+l satisfying xk+l � x1, . . . , xk+l−1 and xk+l � 3
4(k+l)

. Then by Lemma 3
there exists δ > 0 not depending on j , such that

Φ
(
λ(j)
)
� k + l − δ

and hence dλ(j) � nkl+1
j (k + l − δ)nj −kl . Therefore

nj
√

dλ(j) � nj

√
nkl+1

j

(k + l − δ)kl
(k + l − δ)

and the proof is complete. �
Lemma 6. Let 0 < n1 < n2 < · · · be a sequence of integers and, for every i � 1, let λ(i) � ni be
such that λ(i) ∈ H(k, l). Then

lim
i→∞Φ

(
λ(i)
)= k + l if and only if lim

i→∞
λ(i)k

ni

= lim
i→∞

λ(i)′l
ni

= 1

k + l
.

Proof. Let limi→∞ Φ(λ(i)) = k + l. Take δ > 0 and consider the interval ( 1
k+l

− δ, 1
k+l

+ δ).

Suppose that λ̄(i)k
ni

/∈ ( 1
k+l

− δ, 1
k+l

+ δ) for some i. It is easy to see that in case xk /∈ ( 1
k+l

− δ,
1

k+l
+ δ) the function Φ(x1, . . . , xk+l) takes a maximal value when

x1 = · · · = xk−1 = xk+1 = · · · = xk+l

and xk = 1
k+l

− δ or 1
k+l

+ δ.
Let this maximal value be k + l − ε, for some ε > 0. Since limi→∞ Φ(λ(i)) = k + l, there

exists i0 such that for all i � i0, Φ(λ(i)) > k + l − ε. By the above this implies that λ̄(i)k
n̄i

∈
( 1 − δ, 1 + δ), for all i � i0. Hence | λ̄(i)k − 1 | < δ, for all i � i0, and limi→∞ λ̄(i)k = 1 .

k+l k+l n̄i k+l n̄i k+l
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Since λ(i)k = λ̄(i)k + l and ni = n̄i + kl, we get that also limi→∞ λ(i)k
ni

= 1
k+l

. Similarly one

proves that limi→∞
λ(i)′l
ni

= 1
k+l

.

Conversely, suppose that limi→∞ λ(i)k
ni

= limi→∞
λ(i)′l
ni

= 1
k+l

. Then also limi→∞ λ̄(i)k
n̄i

=
limi→∞ λ̄◦(i)l

n̄i
= 1

k+l
. Since λ̄(i)1 � · · · � λ̄(i)k , λ̄◦(i)1 � · · · � λ̄◦(i)l and

λ̄(i)1

n̄i

+ · · · + λ̄(i)k

n̄i

+ λ̄◦(i)1

n̄i

+ · · · + λ̄◦(i)l
n̄i

= 1

we also have

lim
i→∞

λ̄(i)j

n̄i

= lim
i→∞

λ̄◦(i)r
n̄i

= 1

k + l

for 1 � j � k,1 � r � l. Hence

lim
i→∞Φ

(
λ(i)
)= Φ

(
1

k + l
, . . . ,

1

k + l

)
= k + l. �

4. Verbally prime algebras

Recall that Pn is the space of multilinear polynomials in x1, . . . , xn and Γn is its subspace of
proper polynomials. We consider the permutation action of Sn on Pn given by σf (x1, . . . , xn) =
f (xσ(1), . . . , xσ(n)), with σ ∈ Sn, f (x1, . . . , xn) ∈ Pn. Clearly Γn is an Sn-submodule of Pn.
Moreover, if A is a PI-algebra, then Pn ∩ Id(A) and Γn ∩ Id(A) are stable under the Sn-action
and this allows us to consider

Pn(A) = Pn

Pn ∩ Id(A)
and Γn(A) = Γn

Γn ∩ Id(A)

as Sn-modules. By complete reducibility we can write

Pn = (Pn ∩ Id(A)
)⊕ Tn and Γn = (Γn ∩ Id(A)

)⊕ Rn,

where Tn
∼= Pn(A) and Rn

∼= Γn(A) as Sn-modules. The Sn-character of Pn(A) is called the nth
cocharacter of A and is denoted by χn(A). Similarly the Sn-character of Γn(A) is the nth proper
cocharacter of A and is denoted by χ

p
n (A). Clearly

cn(A) = degχn(A) and c
p
n (A) = degχ

p
n (A).

Since

Γn(A) = Γn

Γn ∩ Pn ∩ Id(A)
∼= Γn + Pn ∩ Id(A)

Pn ∩ Id(A)
,

it follows that Γn(A) is isomorphic to a submodule of Pn(A). Hence, if
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χn(A) =
∑
λ�n

mλχλ and χ
p
n (A) =

∑
λ�n

m′
λχλ (11)

are the decompositions of the nth cocharacter and of the nth proper cocharacter of A into irre-
ducible characters, we obtain that m′

λ � mλ, for all λ � n.
Recall that if χn(A) and χ

p
n (A) have the decompositions given in (11), then

ln(A) =
∑
λ�n

mλ and l
p
n (A) =

∑
λ�n

m′
λ

are the nth colength and the nth proper colength of A. By a result of Berele and Regev [3], if
A is a PI-algebra, then the sequence ln(A), n = 1,2, . . . is polynomially bounded. But then, by
the above we have

Remark 2. If A is a PI-algebra then, for all n � 1, we have that l
p
n (A) � ant , for some constants

a, t > 0.

In what follows we shall write χn(A) ⊆ H(k, l), if mλ = 0 in (11) as soon as λ /∈ H(k, l).
This means that eTλf ≡ 0 is an identity of A, for any λ /∈ H(k, l) and any multilinear polynomial
f = f (x1, . . . , xn). Similarly, χp

n (A) ⊆ H(k, l) if and only if eTλh ≡ 0 is an identity of A, for any
λ /∈ H(k, l) and any multilinear proper polynomial h = h(x1, . . . , xn). We shall use this approach
in order to estimate the asymptotic behavior of c

p
n (A).

Recall that an associative algebra A is a superalgebra or a Z2-graded algebra if A has
a vector space decomposition A = A(0) ⊕ A(1) such that A(0)A(0) + A(1)A(1) ⊆ A(0) and
A(0)A(1) + A(1)A(0) ⊆ A(1). The subspace A(0) is called the even component while A(1) is the
odd component of A. Any element a ∈ A(0) ∪ A(1) is called homogeneous. Moreover, a is even
if a ∈ A(0) and odd if a ∈ A(1).

If Y and Z are two countable sets of indeterminates, and we consider all y ∈ Y as even
variables and all z ∈ Z as odd variables, then the free associative algebra F 〈Y,Z〉 is natu-
rally endowed with a Z2-grading. We say that a polynomial f (y1, . . . , yr , z1, . . . , zt ) ≡ 0 is
a graded identity of a superalgebra A = A(0) ⊕ A(1) if f (a1, . . . , ar , b1, . . . , bt ) = 0, for all
a1, . . . , ar ∈ A(0), b1, . . . , bt ∈ A(1). Let Pr,t be the subspace of F 〈Y,Z〉 of multilinear poly-
nomials in y1, . . . , yr , z1, . . . , zt . Then Pr,t has a natural structure of Sr × St -module, if we let
Sr act on y1, . . . , yr and St on z1, . . . , zt . Recall also that any irreducible Sr × St -module Q is
isomorphic to M ⊗ N , where M and N are irreducible modules for Sr and St , respectively, i.e.,
Q corresponds to a pair of partitions (μ, ν) where μ � r, ν � t , and χ(M) = χμ, χ(N) = χν .

An important role in PI-theory is played by the infinite dimensional Grassmann algebra
G = 〈e1, e2, . . . | eiej + ej ei = 0, i, j = 1,2, . . .〉. Recall that G has a natural Z2-grading

G = G(0) ⊕G(1) where G(0) and G(1) are the subspaces spanned by the monomials in the ei ’s of
even and odd length, respectively. A basic tool that we shall use here, is a theorem of Kemer as-
serting that given a PI-algebra A there exists a finite dimensional superalgebra B = B(0) ⊕ B(1)

such that Id(A) = Id(G(B)) where G(B) = (G(0) ⊗ B(0)) ⊕ (G(1) ⊗ B(1)) is the Grassmann
envelope of B (see [14]).

By a result of Berele [2, Theorem 3], for any finite dimensional superalgebra B = B(0) ⊕B(1),
the cocharacter of its Grassman envelope χn(G(B)) lies in the hook H(m, l), where m =
dimB(0) and l = dimB(1). In case B is a unitary superalgebra, for the proper cocharacter this
result can be improved as follows.
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Lemma 7. Let B = B(0) ⊕ B(1) be a finite dimensional superalgebra with 1 and let A = G(B)

be its Grassmann envelope. Then χ
p
n (A) ⊆ H(k, l) for all n = 1,2, . . . , where dimB(0) = k + 1,

dimB(1) = l.

Proof. Let λ � n be a partition such that mλ �= 0 in χ
p
n (A). Denote by f = f (x1, . . . , xn)

a proper polynomial generating an irreducible submodule Q of Rn
∼= Γn(A) with character χλ.

Since f is not an identity of A, by eventually reordering the variables, there exists an evalua-
tion x1 �→ a1 ∈ A(0), . . . , xp �→ ap ∈ A(0), xp+1 �→ b1 ∈ A(1), . . . , xn �→ bn−p ∈ A(1) such that
f (a1, . . . , ap, b1, . . . , bn−p) �= 0 in A. This means that f (y1, . . . , yp, z1, . . . , zq) is not a graded
identity of A where q = n − p, y1, . . . , yp are even variables and z1, . . . , zq are odd variables.

Consider the Sp × Sq -module generated by f (y1, . . . , yp, z1, . . . , zq) and let M be one of
its irreducible submodules. It is well known that M corresponds to a pair of partitions (μ, ν),
with μ � p,ν � q . There exist Young tableaux Tμ and Tν and a polynomial g0 ∈ M such that
0 �= eTμeTν g0 ∈ M . It follows that also the polynomial

g =
( ∑

σ∈CTμ

(sgnσ)σ

)
eTμeTν g0

lies in M and is non-zero, i.e., g is not a graded identity of A. Let μ = (μ1, . . . ,μr) and ν =
(ν1, . . . , νs). Then in particular, g is alternating on r even variables and is symmetric on ν1 odd
variables. Since g is a proper polynomial, in order to get a non-zero value, we cannot evaluate
any yi into 1⊗a, a ∈ G(0). Since dimB(0) = k+1, it follows that r � k, i.e., μ lies in a horizontal
strip of height k. Similarly, since dimB(1) = l, we get that ν lies in a vertical strip of width l.

Now we consider the Sn-action on x1 = y1, . . . , xp = yp, xp+1 = z1, . . . , xn = zq and let
FSnM be the Sn-module generated by M . By the Littlewood–Richardson rule (see [12, The-
orem 2.3.9]) it follows that the character of FSnM lies in the hook H(k, l). On the other hand,
FSnM ⊆ Q and Q is an irreducible Sn-module. Hence FSnM = Q and χ(Q) ⊆ H(k, l). Since
Q is an arbitrary irreducible Sn-submodule of Rn

∼= Γn(A) we get χ
p
n (A) ⊆ H(k, l). �

Lemma 8. Let B = B(0)⊕B(1) be a finite dimensional simple superalgebra over an algebraically
closed field F , dimB(0) = k + 1,dimB(1) = l, with k + l � 2, and let A = G(B). Then for
any δ > 0 there exist a natural number N and partitions μ(i) � iN , i = 1,2, . . . , such that in
χ

p
iN(A) =∑λ(i)�Ni mλ(i)χλ(i) all multiplicities mμ(i) are non-zero and

∣∣∣∣μ(i)j

iN
− 1

k + l

∣∣∣∣� 2(k + l)δ,

∣∣∣∣μ(i)′s
iN

− 1

k + l

∣∣∣∣� 2(k + l)δ

for all j = 1, . . . , k, s = 1, . . . , l. Besides, |μ(i + 1)1 − μ(i)1| � N , |μ(i + 1)′1 − μ(i)′1| � N ,
for all i � 1.

Proof. Recall that c
p
n (A) = dimΓn(A). Since A is a unitary algebra, by [1] we have that

lim supn→∞
n
√

c
p
n (A) = exp(A) − 1, and by [12]

lim sup n
√

cn(A) − 1 = exp(A) − 1 = k + 1 + l − 1 = k + l.

n→∞
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Since by Remark 2 the proper colength of A is polynomially bounded, it follows that there exist
a sequence of integers t1 < t2 < · · · and partitions λ(1) � t1, λ(2) � t2, . . . such that

lim
j→∞

tj
√

dλ(j) = k + l.

Note that by Lemma 7, λ(j) ⊆ H(k, l), for all j = 1,2, . . . . Applying Lemma 5 we obtain that
λ(j)k, λ(j)′l � 2tj

3(k+l)
for all j = 1,2, . . . . Then by Lemma 4,

lim
j→∞Φ

(
λ(j)
)= k + l

and by Lemma 6,

lim
j→∞

λ(j)k

tj
= lim

j→∞
λ(j)′l

tj
= 1

k + l
, (12)

where λ(j)′ is the conjugate partition of λ(j) � tj .
From (12) it follows that for any δ > 0 there exist tj = N and λ = λ(j) � N such that λ ⊆

H(k, l), the multiplicity mλ is non-zero in χ
p
N(A) and

∣∣∣∣λk

N
− 1

k + l

∣∣∣∣< δ,

∣∣∣∣λ′
l

N
− 1

k + l

∣∣∣∣< δ. (13)

As a consequence of (13) we obtain

λk

N
� 1

k + l
− δ and

λ′
l

N
� 1

k + l
− δ. (14)

Moreover, we can suppose that N also satisfies

k + l

N
< δ. (15)

Since mλ �= 0, there exists a multilinear proper polynomial h = h(x1, . . . , xN) generating an
irreducible SN -submodule of ΓN mod ΓN ∩ Id(A) with character χλ.

Given an integer i > 0, consider the proper polynomial

gi = h1h2 · · ·hi,

where hj = h(x(j−1)N+1, . . . , xjN ). Since A generates a prime variety, gi is not an identity of A

(see [14] or [12, Theorem 3.7.8]).
Consider the SiN -module generated by gi and let M be one of its irreducible submodules.

Then χ(M) = χμ for some partition μ � iN . By Lemma 7, χ
p
n (A) ⊆ H(k, l). Referring to (13)

we can suppose that λk > l and λk+1 = l, i.e. λ′
l > k. Since each hj generates an SN -module

with character χλ and χμ ⊆ H(k, l), from the Littlewood–Richardson rule it follows that

μk � iλk − il, μ′ � iλ′ − ik
l l
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(see [13, p. 94]). Hence, by (14) and (15),

μk

iN
� λk

N
− l

N
>

1

k + l
− 2δ,

μ′
l

iN
�

λ′
l

N
− k

N
>

1

k + l
− 2δ. (16)

Denote μ = μ(i). Since μ(i)1 � · · · � μ(i)k , μ(i)′1 � · · · � μ(i)′l and

μ(i)1

iN
+ · · · + μ(i)k

iN
+ μ(i)′1

iN
+ · · · + μ(i)′l

iN
= 1,

the relation (16) implies that

1

k + l
− 2δ � μ(i)1

iN
� 1

k + l
+ 2δ(k + l)

and

1

k + l
− 2δ �

μ(i)′1
iN

� 1

k + l
+ 2δ(k + l).

This proves the first part of the lemma.
Finally, the inequalities 0 � |μ(i + 1)1 − μ(i)1| � N and 0 � |μ(i + 1)′1 − μ(i)′1| � N are

obvious. �
5. Minimal superalgebras

Throughout this section we assume that F is an algebraically closed field of characteristic
zero. We start by recalling the basic structure theorems of the finite dimensional superalgebras
(see for instance [12, Section 3.5]). Let B = B(0) ⊕ B(1) be a finite dimensional superalgebra
over F and let J = J (B) be its Jacobson radical. Then J is a graded ideal and there exists a
maximal semisimple subalgebra Bss such that B = Bss + J . Moreover Bss can be chosen to be a
superalgebra and we can write Bss = B1 ⊕· · ·⊕Bm, where B1, . . . ,Bm are simple superalgebras.
Since the field F is algebraically closed, the algebras Bi must be of one of the following three
types:

1. A = Mn(F) with trivial grading A = A(0), A(1) = 0.
2. A = Mk,l(F ) = {( P Q

R S

)}
, k � l > 0, where P , Q, R, S are k × k, k × l, l × k and l × l

matrices, respectively. A is endowed with the grading

A(0) =
{(

P 0

0 S

)}
, A(1) =

{(
0 Q

R 0

)}
.

3. A = Mn(F ⊕ cF ), where c2 = 1 with grading A(0) = Mn(F), A(1) = cMn(F ).

Next we recall the construction of a minimal superalgebra (see [11], [12, Definition 8.1.3,
Lemma 8.1.6]).

Let B1 ⊕ · · · ⊕ Bm be a maximal semisimple subalgebra of a finite dimensional superalgebra
B = B(0) ⊕ B(1) where B1, . . . ,Bm are graded simple and let J = J (0) ⊕ J (1) be the Jacobson
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radical of B . Then B is said to be a minimal superalgebra if there exist homogeneous elements
w12, . . . ,wm−1,m ∈ J (0) ∪ J (1) and minimal graded idempotents e1 ∈ B1, . . . , em ∈ Bm such that

eiwi,i+1 = wi,i+1ei+1 = wi,i+1

for all i = 1, . . . ,m − 1, the product w12w23 · · ·wm−1,m is non-zero and w12, . . . ,wm−1,m gen-
erate J as a two-sided ideal of B . As a vector space the minimal superalgebra B has the
decomposition

B =
⊕

1�i�j�m

Bij ,

where B11 = B1, . . . ,Bmm = Bm and

Bij = Biiwi,i+1Bi+1,i+1 · · ·Bj−1,j−1wj−1,jBjj

for all i < j . Moreover, J =⊕i<j Bij and BijBkl = δjkBil where δjk is the Kronecker delta.

Lemma 9. Let B = Bss + J be a minimal superalgebra with Bss = B1 ⊕ · · · ⊕ Bm as above. Let
dimB

(0)
ss = k + 1, dimB

(1)
ss = l and let A = G(B). If B �= F ⊕ cF , then for any ε > 0 there exist

a constant b and a sequence of integers N1 < N2 < · · · such that

c
p

Ni+3m−3(A) � 1

(k + l)kl

1

N
(k+l)3

i

(k + l − ε)Ni

for all i = 1,2, . . . . Moreover Ni+1 − Ni � b, for all i � 1.

Proof. The main idea of the proof is to find, by using Lemma 8, a sequence N1,N2, . . . and
partitions ρ(i) � Ni satisfying mρ(i) �= 0 and Φ(ρ(i)) > k + l − ε. We then apply Lemma 4.

Let B = Bss + J where Bss = B1 ⊕ · · · ⊕ Bm and B1, . . . ,Bm are simple superalgebras. Let
also wij ∈ J be the elements defined above.

First we consider the case m = 1, i.e., B is a simple superalgebra. Then by Lemmas 7 and 8,
for any δ > 0 one can find N with the following property: for all Ni = iN there exists a partition
μ(i) � Ni , μ(i) ⊆ H(k, l), with multiplicity mμ(i) �= 0, where k + 1 = dimB(0), l = dimB(1)

and ∣∣∣∣μ(i)j

iN
− 1

k + l

∣∣∣∣< 2(k + l)δ,

∣∣∣∣μ(i)′s
iN

− 1

k + l

∣∣∣∣< 2(k + l)δ (17)

for all j = 1, . . . , k, s = 1, . . . , l. Since Φ(μ(i)) is a continuous function, by Lemma 6 it follows
that for some δ small enough,

Φ
(
μ(i)
)
� k + l − ε.

Hence by applying Lemma 4 we obtain the lower bound

c
p
Ni

(A) = c
p
iN (A) � degχμ(i) = dμ(i) � 1

(k + l)kl

1

N
(k+l)3 (k + l − ε)Ni .
i
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Now let m � 2. Denote dimB
(0)
j = kj , j = 1, . . . ,m − 1, dimB

(1)
j = lj , j = 1, . . . ,m, and

dimB
(0)
m = km + 1. Let also k = k1 + · · · + km, l = l1 + · · · + lm. Then

dim
(
B

(0)
1 ⊕ · · · ⊕ B(0)

m

)= k + 1, dim
(
B

(1)
1 ⊕ · · · ⊕ B(1)

m

)= l.

Suppose first that Bm �= F ⊕ cF , i.e., G(Bm) is not the Grassmann algebra. We start by con-
structing the sequence N1 < N2 < · · · .

By Lemma 8 applied to Bm, for any δ > 0 one can find N such that for all i = 1,2, . . . , there
exist partitions μ(i) � iN with mμ(i) �= 0 satisfying

∣∣∣∣μ(i)j

iN
− 1

km + lm

∣∣∣∣< 2(km + lm)δ,

∣∣∣∣μ(i)′s
iN

− 1

km + lm

∣∣∣∣< 2(km + lm)δ (18)

for all j = 1, . . . , km, s = 1, . . . , lm. Now we fix i and denote nm = iN , λ(m) = μ(i) � nm.
Next we choose positive integers n1, . . . , nm−1 and partitions λ(1) � n1, . . . , λ(m − 1) � nm−1
for G(B1), . . . ,G(Bm−1) respectively, in the following way.

By [12, Lemma 6.3.3] for any simple superalgebra Bj ,1 � j � m − 1, and for any positive
integer tj there exist an integer nj , a partition λ(j) of nj with

h(kj , lj ,2tj − kj − lj ) � λ(j) � h(kj , lj ,2tj ), (19)

and a Young tableau Tλ(j) such that G(Bj ) does not satisfy an identity fj ≡ 0 corresponding
to Tλ(j). Here h(a, b, t) is the finite hook (partition)

h(a, b, t) = ( b + t, . . . , b + t︸ ︷︷ ︸
a

, b, . . . , b︸ ︷︷ ︸
t

).

We choose the integers tm−1, . . . , t2, t1 in the following way. We let tm−1 be the least integer
satisfying 2tm−1 − km−1 − lm−1 � λ(m)1, λ(m)′1. Then

max
{
λ(m)1, λ(m)′1

}
� 2tm−1 − km−1 − lm−1 � max

{
λ(m)1, λ(m)′1

}+ 1. (20)

Let all other tj , j =m−2, . . . ,1, be minimal satisfying 2tj −kj − lj �2tj+1 + lj+1,2tj+1 +kj+1.
Then

2tj+1 + max{lj+1, kj+1} � 2tj − kj − lj � 2tj+1 + max{lj+1, kj+1} + 1 (21)

for all j = 1, . . . ,m − 2. Since a hook h(a, b, t) is a partition of n = ab + (a + b)t , we obtain
that if λ(j) � nj , then

(2tj − kj − lj )(kj + lj ) + kj lj � nj � 2tj (kj + lj ) + kj lj (22)

for all j = 1, . . . ,m − 1. We then define Ni = n1 + · · · + nm. We shall prove below
that N1,N2, . . . , is the desired sequence. Note that Ni , all n1, . . . nm−1, t1, . . . , tm−1, and
λ(1), . . . , λ(m) (but not k1, . . . , km, l1, . . . , lm) depend on i = 1,2, . . . .
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We start by proving that Ni+1 − Ni is bounded by a constant. Recall that λ(m) = μ(i) � iN

and μ(i + 1)1 − μ(i)1, μ(i + 1)′1 − μ(i)′1 are bounded by N by Lemma 8. Then, if we write
tj = tj (i), j = 1, . . . ,m − 1, from (20) we get

2tm−1(i + 1) − 2tm−1(i) � N + 1.

Similarly, by (21) all tj (i+1)−2tj (i) are bounded by constants not depending on i. For instance,
2tm−2(i + 1) − 2tm−2(i) � N + 2. If we take for convenience a constant b′ such that

2tj (i + 1) − 2tj (i) � b′

for all j = 1, . . . ,m − 1, then from (22) we deduce that

nj (i + 1) − nj (i) � (kj + lj )
2 + b′(kj + lj ).

Finally, since Ni = n1(i) + · · · + nm−1(i) + iN then

Ni+1 − Ni < b,

for some constant b not depending on i.
In order to complete the proof of the lemma in case Bm �= F ⊕ cF , we need to construct

a suitable proper polynomial which is not an identity of A. As we mentioned above, by [12,
Lemma 6.3.3], for every j there exists an ordinary non-identity fj of G(Bj ) corresponding
to the partition λ(j) � nj . The choice of λ(1), . . . , λ(m) allows us to glue the Young tableaux
Tλ(1), . . . , Tλ(m) as in [12, Section 6.4].

More precisely, we start by gluing the Young diagrams Dλ(j) and Dλ(j+1) by gluing the first
row of Dλ(j+1) to the (kj + 1)th row of Dλ(j), the second row of Dλ(j+1) to the (kj + 2)th
row of Dλ(j), and so on. By the inequalities (21), this procedure gives a new diagram denoted
Dλ(j) � Dλ(j+1). We then construct the diagram Dλ(1) � · · · � Dλ(m) obtained by gluing together
the diagrams Dλ(1), . . . ,Dλ(m). We can now glue the Young tableaux Tλ(1), . . . , Tλ(m) in a similar
way: if αuv is the entry appearing in the (u, v) position of Tλ(i), we write Tλ(i) = Dλ(i)(αuv). For
i = 1, . . . ,m, we add n1 + · · · + ni−1 to each entry of Tλ(i), and we call T 0

λ(i) the new tableau.
Then we define

Tρ = Tρ(i) = T 0
λ(1) � · · · � T 0

λ(m) (23)

to be the diagram Dλ(1) � · · ·�Dλ(m) filled up with the entries of the tableaux T 0
λ(i). Hence Tρ(i) is

a tableau on Ni boxes.
Next we show how to construct a proper polynomial from the tableau Tρ . We start with a

multilinear polynomial f1 = f1(x1, . . . , xn1) which is not an identity of G(B1). Then there exist
homogeneous elements a1, . . . , an1 ∈ B1, g1, . . . , gn1 ∈ G such that

0 �= f1(a1 ⊗ g1, . . . , an1 ⊗ gn1) = f̃ (a1, . . . , an1) ⊗ g1 · · ·gn1 = ā ⊗ g,

where ā ∈ B1 and g ∈ G. Since B1 is a matrix algebra or a sum of two matrix algebras, it is
easy to find c1, c2 ∈ B1 such that c1āc2 = e1 where e1 is a graded idempotent appearing in the
definition of a minimal superalgebra. In particular, e1w12 = w12. Let
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f̄1 = y1f1(x1, . . . , xn1)y2z1.

From the above it follows that under a suitable evaluation of y1, y2, x1, . . . , xn1 in G(B1) and
of z1 into w12 ⊗ g′, for some g′ ∈ G, the polynomial f̄1 takes the non-zero value w12 ⊗ h1, for
some h1 ∈ G.

On the other hand, since w12B1 = 0, under the same evaluation, any right-normed Lie mono-
mial

[y1, xσ(1), . . . , xσ(n1), y2, z1]

takes the same value as the associative monomial y1xσ(1) · · ·xσ(n1)y2z1. This means that after
replacing all monomials of f̄1 with the corresponding right-normed Lie monomials we obtain a
proper polynomial

p1 = p1(x1, . . . , xn1, y1, y2, z1)

which takes the non-zero value w12 ⊗ h1 ∈ G(B).
By applying the above procedure to the algebras G(B1), . . . ,G(Bm−1), we construct polyno-

mials p1, . . . , pm−1 on disjoint sets of indeterminates such that the product

p1 · · ·pm−1

takes the non-zero value w12 · · ·wm−1,m ⊗ h1 · · ·hm−1 = w1m ⊗ h1 · · ·hm−1 ∈ G(B). Finally,
recalling that we are applying Lemma 8 to G(Bm), we let pm(x1, . . . , xiN ) be a proper poly-
nomial corresponding to the partition λ(m) and pm is not an identity of G(Bm). Then by
[12, Lemma 8.3.1, part 2], the polynomial pm can take either the value p̄ = 1 ⊗ s1 or p̄ =
(em − e′

m) ⊗ s2 or p̄ = (em + e′
m) ⊗ s3, for some s1, s2, s3 ∈ G and for some graded idempotent

e′
m ∈ Bm. In any case

(w1m ⊗ h1 · · ·hm−1)p̄ = w1m ⊗ h1 · · ·hm−1sj �= 0.

Therefore if we let p be the product of the polynomials p1, . . . , pm on disjoint sets of variables

p1 · · ·pm = p = p(x1, . . . , xNi
, y1, . . . , y2m−2, z1, . . . , zm−1),

then p is a proper polynomial and p /∈ ΓNi+3m−3 ∩ Id(A). Moreover, if we let SNi
act on the vari-

ables x1, . . . , xNi
, then eTρ p generates an irreducible SNi

-module where Tρ is defined by (23).
Let us verify that eTρ p /∈ ΓNi+3m−3 ∩ Id(A).

Denote by C0 the subgroup of CTρ of permutations preserving the entries inside each one of
the tableaux T ◦

λ(1), . . . , T
◦
λ(m). Similarly, let R0 be the subgroup of RTρ of permutations preserving

the entries inside all tableaux T ◦
λ(1), . . . , T

◦
λ(m). Then define

e0 =
∑
σ∈R0
τ∈C0

(sgn τ)στ = eTλ(1)
· · · eTλ(m)

in FSN . Let

i
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CTρ = C0 ∪ Coπ1 ∪ · · · ,
RTρ = R0 ∪ ν1R0 ∪ · · ·

be the decompositions of CTρ and RTρ into right and left cosets over C0 and R0, respectively.
Then, clearly,

eTρ = e0 +
∑

i+j�1

νie0πj = e0 + e′
0,

where ν0 = π0 denotes the unit element of SNi
.

Recall that ϕ(p) �= 0, for some evaluation ϕ : F 〈X〉 �→ G(B) such that ϕ(x1), . . . , ϕ(xn1),
ϕ(y1), ϕ(y2) ∈ G(B1), ϕ(xn1+1), . . . , ϕ(xn1+n2), ϕ(y3), ϕ(y4) ∈ G(B2), and so on; also ϕ(z1) =
w12 ⊗ h1, . . . , ϕ(zm−1) = wm−1,m ⊗ hm−1 ∈ G(J ). Note that

e0p = (eTλ(1)
p1) · · · (eTλ(m)

pm) = γp

for some non-zero scalar γ . On the other hand, since

Bσ(1)w12Bσ(2) · · ·Bσ(m−1)wm−1,mBσ(m) = 0

in B , for any permutation σ ∈ Sm, σ �= (1), we have that

ϕ(πjp) = ϕ(νip) = 0,

as soon as i � 1 or j � 1. That is ϕ(e′
0p) = 0. Hence

ϕ(eTρ p) = ϕ
(
e0p + e′

0p
)= γ ϕ(p) �= 0,

and we get that c
p

Ni+3m−3(A) � dρ(i).

In order to find a lower bound for c
p

Ni+3m−3(A) = dimΓNi+3m−3(A) we first recall that
λ(m) = μ(i) satisfies (18), where δ can be chosen to be an arbitrary positive real number.
From (21) it easily follows that

2t1 � 2t2 + k1 + l1 + k2 + l2 + 1 � · · ·
� 2tm−1 + 2(k1 + · · · + km−2 + l1 + · · · + lm−2) + km−1 + lm−1 + m − 2

and by (20)

2t1 � max
{
λ(m)1, λ(m)′1

}+ 2(k + l) + m − 1.

Hence by (19) we have

λ(1)1 � l1 + 2t1 � max
{
λ(m)1, λ(m)′

}+ 3(k + l) + m − 1. (24)
1
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Similarly,

λ(1)′1 � k1 + 2t1 � max
{
λ(m)1, λ(m)′1

}+ 3(k + l) + m − 1. (25)

By using (18) we can write

∣∣∣∣λ(m)km

Ni

− λ(m)′lm
Ni

∣∣∣∣� iN

Ni

∣∣∣∣λ(m)km

iN
− λ(m)′lm

iN

∣∣∣∣� 4(km + lm)δ � 4(k + l)δ. (26)

Also, if Ni is large enough, say 3(k+l)+m−1
Ni

< (k + l)δ, then by (24) and (18) we obtain

λ(1)1

Ni

− λ(m)1

Ni

� 5(k + l)δ.

Finally by the above and (18) we get

λ(1)1

Ni

− λ(m)km

Ni

� 9(k + l)δ. (27)

Similarly, by (25) and (18) we get

λ(1)′1
Ni

− λ(m)′lm
Ni

� 9(k + l)δ. (28)

If we now recall the above construction of the partition ρ(i) � Ni , we have that ρ(i)1 =
λ(1)1, . . . , ρ(i)k = λ(m)km , ρ(i)′1 = λ(1)′1, . . . , ρ(i)′l = λ(m)′lm . Hence from (26), (27) and (28)

it follows that any two arguments of the function Φ(ρ(i)) differ at most by 22(k + l)δ. Since δ

was initially taken arbitrarily small, we get that, given any δ′ > 0, we can find δ such that∣∣∣∣ρ(i)j

Ni

− 1

k + l

∣∣∣∣< δ′ and

∣∣∣∣ρ(i)′s
Ni

− 1

k + l

∣∣∣∣< δ′

for all j = 1, . . . , k, s = 1, . . . , l. But then by Remark 1,

Φ
(
ρ(i)
)
> k + l − ε.

Finally, by Lemma 4

c
p

Ni+3m−3(A) � dρ(i) � 1

(k + l)kl

1

N
(k+l)3

i

(k + l − ε)Ni ,

and the proof of the lemma in complete in case Bm �= F ⊕ cF .
Now let Bm = F ⊕ cF , i.e. G(Bm) � G = G(0) ⊕ G(1). It is well known that the polynomial

[x1, x2, x3] generates the T-ideal Id(G) (see for instance [12, Theorem 4.1.8]). It follows that
any multilinear proper polynomial of odd degree lies in Id(G) and, so, c

p

2n+1(G) = 0, for n � 1.
Also, since [x, y1][z, y2] ≡ −[x, y2][z, y1] (mod Id(G)), it is easily checked that the polynomial
[x1, x2] · · · [x2n−1, x2n] spans Γ2n mod Γ2n ∩ Id(G). In conclusion we have
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c
p
n (G) = dimΓn(G) =

{
0, if n is odd,

1, if n is even.

The final part of the proof is similar to the previous one. Given positive integers N and i,
we denote λm = (1, . . . ,1) � 2iN and consider the standard polynomial St2iN which is a proper
polynomial not vanishing on G(Bm) � G. Then, as above, we take for B1, . . . ,Bm−1 partitions
λ1 � n1, . . . , λm−1 � nm−1 such that

h(kj , lj ,2tj − kj − lj ) � λj � h(kj , lj ,2tj ), j = 1, . . . ,m − 1,

tm−1 = 2iN and t1, . . . , tm−1 satisfy (21). Then we glue the tableaux Tλ1 , . . . , Tλm as above.
Clearly the corresponding partition ρ = ρ(i) � Ni = n1 + · · · + nm−1 + 2iN satisfies

h(k, l,2t − q) � ρ � h(k, l,2t) (29)

where t = t1, q is a constant not depending on i and Ni+1 − Ni is bounded by some constant
also not depending on i. Recall that

dh(k,l,t) �
n→∞anb(k + l)n

for some constants a, b (see, for instance, [12, Lemma 6.2.5]) where n = (k + l)t +kl. From (29)
it follows that

Ni − (2t − q)(k + l) − kl � (k + l)q.

Applying Lemma 4 to dh(k,l,2t−p) we conclude that the inequality

dh(k,l,2t−q) � 1

(k + l)kl

1

N
(k+l)3

i

(
k + l − 1

2
ε

)Ni−(k+l)q

holds for all Ni large enough, for any fixed ε > 0. Hence if we take our initial N sufficiently
large, the inequality

c
p

Ni+3m−3(A) � 1

(k + l)kl

1

N
(k+l)3

i

(k + l − ε)Ni

holds and the proof of the lemma is complete. �
Note that Lemma 9 holds also for B = F ⊕ cF but in the proof presented here, we have used

the function Φ(λ) which is defined only in case k + l � 2.

Theorem 2. Let B = B(0)⊕B(1) be a minimal superalgebra, B �= F ⊕cF , with dimB
(0)
ss = k+1,

dimB
(1)
ss = l and let A = G(B). Then expp(A) exists and equals k + l.
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Proof. By Lemma 9, for any fixed ε > 0 there exist N1 < N2 < · · · such that Ni+1 −Ni < b and

c
p

Ni+3m−3(A) >
1

CNa
i

(k + l − ε)Ni (30)

for some constants a, b,C not depending on ε. Here m is the number of simple components of
the semisimple superalgebra Bss .

Suppose first that B is a simple superalgebra, i.e., m = 1. We will show that c
p
n+j (A) � c

p
n (A)

for any j � 2. Indeed, let c
p
n (A) = k and let f1, . . . , ft be multilinear proper polynomials on

x1, . . . , xn linearly independent modulo Γn ∩ Id(A). Since B �= F ⊕ cF , A = G(B) is not Lie
nilpotent, that is g = [y1, . . . , yj ] is not an identity of A. Hence, since A generates a prime
variety [14], for any set of scalars α1, . . . , αt , not all zero, the polynomial

(α1f1 + · · · + αtft )g

is not an identity of A. In particular, c
p
n+j (A) � c

p
n (A). Hence by (30), for any Ni � n � Ni+1,

we have

c
p
n (A) � c

p
Ni−1

(A) >
1

CNa
i−1

(k + l − ε)Ni−1

� 1

Cna
(k + l − ε)n

1

(k + l − ε)2b
� 1

Cna

1

(k + l)2b
(k + l − ε)n,

since n − Ni−1 < 2b. In particular,

lim inf
n→∞

n

√
c
p
n (A) = k + l. (31)

Since by [1]

lim sup
n→∞

n

√
c
p
n (A) = exp(A) − 1 = k + l,

the proof is complete in case m = 1.
Let now m � 2. We shall first prove that c

p

n+1(A) � c
p
n (A). Again, let c

p
n (A) = t and let

f1, . . . , ft be multilinear proper polymomials on x1, . . . , xn linearly independent modΓn∩Id(A).
Given a set of not all zero scalars α1, . . . , αt , the polynomial

f = α1f1 + · · · + αtft

is not an identity of A. Then by [12, Lemma 8.3.1], for some p ∈ G, the element w1m ⊗ p is a
linear combination of values of f in A. But since

[w1m ⊗ p, em ⊗ q] = w1mem ⊗ pq = w1m ⊗ pq �= 0,

for some q ∈ G, the proper polynomial [f,y] is not an identity of A and therefore
c
p

(A) � c
p
n (A).
n+1
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From the latter inequality we get that for any Ni + 3m − 3 � n � Ni+1 + 3m − 3,

c
p
n (A) � 1

CNa
i

(k + l − ε)Ni � 1

C′na
(k + l − ε)n,

for some constant C′ not depending on i. In particular,

lim inf
n→∞

n

√
c
p
n (A) � k + l − ε

for any ε > 0. As before we conclude that

lim inf
n→∞

n

√
c
p
n (A) = lim sup

n→∞
n

√
c
p
n (A) = k + l. �

6. Computing the proper exponent

In this section we shall prove the existence of the proper exponent for all PI-algebras with the
exception of some algebras strictly related to the Grassmann algebra and whose proper exponent
does not exist.

We start with the following technical lemmas. Recall from Section 2 that B� denotes the
algebra obtained from an algebra B by adjoining a unit element.

Lemma 10. For any superalgebra B , Id(G(B�)) = Id(G(B)�).

Proof. Clearly G(B)� = G(B)+F and G(B�) = G(B)+G(0) ⊇ G(B)�. Hence G(B)� satisfies
all the identities of G(B�). On the other hand, G(0) lies in the center of G(B�) and therefore
Id(G(B�)) = Id(G(B) + F). �
Lemma 11. For any finite dimensional superalgebra B we have exp(G(B�)) = exp(G(B)) or
exp(G(B)) + 1.

Proof. As we remarked before, we may assume that F is algebraically closed. Let B = C1 ⊕
· · · ⊕ Cm + J be the Wedderburn–Malcev decomposition of B where C1, . . . ,Cm are simple
superalgebras and J is the Jacobson radical of B . By [8] (see also [12]),

exp
(
G(B)
)= max dim(Ci1 ⊕ · · · ⊕ Cik ),

where Ci1, . . . ,Cik ∈ {C1, . . . ,Cm} are distinct and satisfy Ci1JCi2J · · ·JCik �= 0.
Since C1 ⊕ · · · ⊕ Cm + F is a maximal semisimple subalgebra of B�, we obtain that

exp(G(B�)) is equal to exp(G(B)) or to exp(G(B)) + 1. �
Given an algebra A let var(A) be the variety of algebras generated by A. Suppose that the

field F is algebraically closed. Recall that a finite dimensional superalgebra A is called reduced if
A has a Wedderburn–Malcev decomposition A = A1 ⊕· · ·⊕Ar +J where A1, . . . ,Ar are simple
superalgebras, J is the Jacobson radical and A1JA2J · · ·JAr �= 0 (see [12, Definition 9.4.2]).

We say that two algebras A and B are PI-equivalent and we write A ∼PI B if Id(A) = Id(B).
We recall the following result that we shall use in the next theorem.
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Theorem 3. (See [12, Theorem 9.4.3].) If A is a PI-algebra, there exist a finite number of reduced
superalgebras B1, . . . ,Bt and a finite dimensional superalgebra D such that

A ∼PI G(B1) ⊕ · · · ⊕ G(Bt) ⊕ G(D),

where exp(A) = exp(G(B1)) = · · · = exp(G(Bt )) and exp(G(D)) < exp(A).

It is known that for any given integer d � 2 there are only finitely many so-called minimal
varieties of exponent d . Recall that a variety V with exp(V) = d � 2 is called minimal if any
proper subvariety of V has exponent strictly less than d , i.e., at most d − 1 (see [5,6,10]). For
d = 2 the minimal varieties are var(G) and var(UT2) where UT2 is the algebra of 2 × 2 upper
triangular matrices. In particular, if exp(V) = 2 then V contains either UT2 or G or both of them
(see for instance [12, Lemma 8.1.5]). We shall make use of this result below.

Next theorem is the main result of this paper about the existence of the proper exponent. We
remark that if A = G ⊕ B ⊕ N where B is a finite dimensional algebra with Jacobson radical
of codimension 1 and N is a nilpotent algebra, then, for n large enough c

p
n (A) = c

p
n (G). Hence

expp(A) does not exist in this case. Next we shall prove that actually this is the only exception.

Theorem 4. Let A be a PI-algebra with exp(A) = d � 1. Then expp(A) exists, is an integer
and expp(A) = d or d − 1, unless exp(A) = 2 and A is PI-equivalent to an algebra of the type
G⊕B ⊕N where B is a finite dimensional algebra whose Jacobson radical is of codimension 1
and N is a nilpotent algebra.

Proof. At the light of Proposition 1, we may assume that exp(A) � 2.
Suppose first that either exp(A) � 3 or exp(A) = 2 and UT2 ∈ var(A). As we mentioned

at the beginning of Section 2, we may assume that the base field F is algebraically closed.
Then, by [12, Lemma 8.1.5], there exists a minimal superalgebra B such that G(B) ∈ var(A)

and d = exp(A) = dimBss = exp(G(B)). If exp(A) � 3, then B �= F ⊕ cF . On the other hand if
exp(A) = 2, by hypothesis UT2 ∈ var(A) and we may take B = UT2 with trivial grading. Hence
also in this case B �= F ⊕ cF , and by Theorem 2 we conclude that expp(G(B)) exists and equals
d − 1.

Now, if A is a unitary algebra, then by [1], expp(A) = exp(A)−1 = d −1. On the other hand,
expp(A) � expp(G(B)) = d − 1. Hence expp(A) exists and equals d − 1.

If A is not a unitary algebra, by Lemmas 10 and 11 for the algebra A� we have exp(A�) = d

or d + 1. If exp(A�) = d then by the first part of the proof, expp(A�) = d − 1. Since A and A�

have the same proper identities, we get expp(A) = d − 1 and we are done. If exp(A�) = d + 1,
then expp(A�) = d since A� is a unitary algebra. Since Γn(A) = Γn(A

�) for all n, expp(A) exists
and equals d .

Therefore in order to finish the proof we may assume that exp(A) = 2 and UT2 /∈ var(A). We
shall prove that in this case expp(A) exists provided A is not PI-equivalent to an algebra of the
type stated in the theorem.

By Theorem 3, A ∼PI G(B1) ⊕ · · · ⊕ G(Bt ) ⊕ G(D), for some reduced superalgebras
B1, . . . ,Bt and a finite dimensional superalgebra D, where exp(G(B1)) = · · · = exp(G(Bt )) = 2
and exp(G(D)) � 1. Now, by the defining property of the exponent, it follows that for 1 � i � t ,
either Bi = F1 ⊕ F2 + J where F1 ∼= F2 ∼= F and F1 ⊕ F2 ⊆ B

(0)
i , or Bi = F ⊕ cF , c2 = 1.

In the first case, F1JF2 �= 0 implies that UT2 ∈ var(G(Bi)) ⊆ var(A), a contradiction. Thus
Bi = F ⊕ cF , and G(Bi) = G. In conclusion A ∼PI G ⊕ G(D) and exp(G(D)) � 1.
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By [12, Theorem 7.2.12], G(D) ∼PI B1 ⊕· · ·⊕Bm where for 1 � i � m, Bi is a finite dimen-
sional algebra and dimBi/J (Bi) � 1.

First suppose that B1, . . . ,Bm are nilpotent or unitary algebras. Let, for example, B1, . . . ,Bk

be unitary and Bk+1, . . . ,Bm nilpotent. Then N = Bk+1 ⊕ · · · ⊕ Bm is a nilpotent algebra.
Let e1, . . . , ek be the unit elements of B1, . . . ,Bk and J1, . . . , Jk the Jacobson radicals of

B1, . . . ,Bk , respectively. Denote by L the one-dimensional subspace spanned by e = e1 +
· · · + ek . Then L � F . We will show that the algebra

B = L + J1 ⊕ · · · ⊕ Jk

is PI-equivalent to B1 ⊕ · · · ⊕ Bk . If f = f (x1, . . . , xn) is a multilinear polynomial and, say,
a1, . . . , aj ∈ Jt for some 1 � t � k then

f (a1, . . . , aj , et , . . . , et ) = f (a1, . . . , aj , e, . . . , e).

That is if f is not an identity of Bt then f is not an identity of B . Since B ∈ var(B1 ⊕ · · · ⊕ Bk)

we get: B ∼PI B1 ⊕ · · · ⊕ Bk . Hence A ∼PI G ⊕ B ⊕ N , where N is a nilpotent algebra and
B = F + J is an algebra with 1, the desired conclusion.

Hence we may assume that some Bi is a non-unitary algebra which is not nilpotent. Write
Bi = F + J and decompose J = J11 ⊕ J10 ⊕ J01 ⊕ J00 as in Proposition 1. Then, since Bi is
non-unitary, J10 ⊕J01 �= 0. As in Proposition 1, it follows that [x1, . . . , xn] is not an identity of Bi ,
for all n � 2. Hence c

p
n (B1 ⊕ · · · ⊕ Bm) � c

p
n (Bi) � 1 for all n � 2. In conclusion, expp(A) =

expp(G ⊕ B1 ⊕ · · · ⊕ Bm) = 1 and the proof is complete. �
We conclude the paper by remarking that one cannot expect to extend the equality expp(A) =

expL(A) from finitely generated PI-algebras to arbitrary algebras. In fact, the following is an
example of a (unitary) PI-algebra A such that expL(A) < expp(A) = exp(A) − 1.

Let

A = M1,1(G) = G
(
M1,1(F )

)= (G(0) G(1)

G(1) G(0)

)
.

It is easily checked that A satisfies the Lie identity [[x1, x2], [x3, x2], x5] ≡ 0, i.e., A is a central
metabelian Lie algebra. Also cL

n (A) � 1 since A is not Lie nilpotent. It can be shown (see [15]
or [12]) that cL

n (A) is polynomially bounded. Actually it is not difficult to see that asymptotically

cL
n (A) � n3. Hence expL(A) = 1. On the other hand, it is well known that exp(A) = 4 (see for

instance [12]); hence by Theorem 4, expp(A) = 3.
We finally remark that the question whether the Lie exponent of an associative PI-algebra

exists and is an integer is still open in general. In case of Lie algebras of so-called non-associative
type, there is an example of a Lie algebra L such that 3.1 < exp(L) � exp(L) < 3.9 [16].
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