We study a semilinear Robin problem driven by the Laplacian plus an indefinite potential. We consider the case where the reaction term f is a Carathéodory function exhibiting linear growth near ±∞. So, we establish the existence of at least two solutions, by using the Lyapunov-Schmidt reduction method together with variational tools.
Vetro C. (2020). Semilinear Robin problems driven by the Laplacian plus an indefinite potential. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 65(4), 573-587.
Data di pubblicazione: | 2020 |
Titolo: | Semilinear Robin problems driven by the Laplacian plus an indefinite potential |
Autori: | |
Citazione: | Vetro C. (2020). Semilinear Robin problems driven by the Laplacian plus an indefinite potential. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 65(4), 573-587. |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1080/17476933.2019.1597066 |
Abstract: | We study a semilinear Robin problem driven by the Laplacian plus an indefinite potential. We consider the case where the reaction term f is a Carathéodory function exhibiting linear growth near ±∞. So, we establish the existence of at least two solutions, by using the Lyapunov-Schmidt reduction method together with variational tools. |
URL: | https://www.tandfonline.com/doi/full/10.1080/17476933.2019.1597066 |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2020_CVEE_Vetro.pdf | Articolo principale | Versione Editoriale | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.