We study a semilinear Robin problem driven by the Laplacian plus an indefinite potential. We consider the case where the reaction term f is a Carathéodory function exhibiting linear growth near ±∞. So, we establish the existence of at least two solutions, by using the Lyapunov-Schmidt reduction method together with variational tools.

Vetro C. (2020). Semilinear Robin problems driven by the Laplacian plus an indefinite potential. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 65(4), 573-587 [10.1080/17476933.2019.1597066].

Semilinear Robin problems driven by the Laplacian plus an indefinite potential

Vetro C.
2020-01-01

Abstract

We study a semilinear Robin problem driven by the Laplacian plus an indefinite potential. We consider the case where the reaction term f is a Carathéodory function exhibiting linear growth near ±∞. So, we establish the existence of at least two solutions, by using the Lyapunov-Schmidt reduction method together with variational tools.
Settore MAT/05 - Analisi Matematica
https://www.tandfonline.com/doi/full/10.1080/17476933.2019.1597066
Vetro C. (2020). Semilinear Robin problems driven by the Laplacian plus an indefinite potential. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 65(4), 573-587 [10.1080/17476933.2019.1597066].
File in questo prodotto:
File Dimensione Formato  
2020_CVEE_Vetro.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 340.53 kB
Formato Adobe PDF
340.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/400246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact