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Abstract. We study a semilinear Robin problem driven by the Laplacian plus an
indefinite potential. We consider the case where the reaction term f is a Carathéodory
function exhibiting linear growth near ±∞. So, we establish the existence of at
least two solutions, by using the Lyapunov-Schmidt reduction method together with
variational tools.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we deal
with the following semilinear Robin problem

(1)

−∆u(z) + ξ(z)u(z) = f(z, u(z)) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω.

In this problem the potential function ξ ∈ Ls(Ω), with s > N , and it is sign changing.
So, the linear part of (1) is indefinite. The reaction term f(z, x) is a Carathéodory
function (that is, for all x ∈ R, z → f(z, x) is measurable and for a.a. z ∈ Ω, x→ f(z, x)
is continuous). We assume that f(z, ·) exhibits linear growth near ±∞. In the boundary

condition
∂u

∂n
denotes the normal derivative of u ∈ H1(Ω) on ∂Ω defined by extension

of the linear map

C1(Ω) ∋ u→ ∂u

∂n
= (∇u, n)RN ,

with n(·) being the outward unit normal on ∂Ω. For the boundary coefficient β(·) we
assume that it belongs to W 1,∞(∂Ω) and β(z) ≥ 0 for all z ∈ ∂Ω. When β ≡ 0 we
recover the Neumann problem.

Semilinear Robin problems were studied by Shi-Li [14] (with superlinear reaction),
Qian-Li [15] (with zero potential), Zhang-Li-Xue [18] (with positive potential, thus
coercive differential operator), Papageorgiou-Rǎdulescu [12] (with reaction admitting
z-dependent zeros), D’Agùı-Marano-Papageorgiou [4] (problems with an asymmetric
reaction), and Papageorgiou-Vetro-Vetro [13] (with reaction resonant both at zero and
±∞). Dirichlet and Neumann problems with indefinite and unbounded potential were
also studied by Papageorgiou-Papalini [9], Kyritsi-Papageorgiou [7] (Dirichlet problems)
and Gasiński-Papageorgiou [6], Papageorgiou-Rǎdulescu [10] (Neumann problems).

The setting and methods here are different from the aforementioned works and are
based on the so-called “Lyapunov-Schmidt reduction method” originally developed by
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Amann [1] and Castro-Lazer [2]. We prove the existence of at least two nontrivial
solutions of problem (1).

2. Auxiliary Results and Hypotheses

In this section we present some auxiliary results and notions which we will need in
the sequel. Let X be a Banach space and X∗ its topological dual. By ⟨·, ·⟩ we denote
the duality brackets for the pair (X∗, X). In the study of problem (1), we will use
the Sobolev space H1(Ω), the Banach space C1(Ω) and the boundary Lebesgue space
Lq(∂Ω), 1 ≤ q ≤ ∞. By ∥ · ∥ we denote the norm of the Sobolev space H1(Ω), defined
by

∥u∥ =
[
∥u∥22 + ∥∇u∥22

]1/2
for all u ∈ H1(Ω).

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·). Using
σ(·), one can define in the usual way the boundary Lebesgue spaces Lq(∂Ω), with
1 ≤ q ≤ ∞. The theory of Sobolev spaces implies that there exists a unique continuous
linear map γ0 : H

1(Ω) → L2(∂Ω), known as the “trace map”, such that

γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).

Thus, we understand the trace map as representing the boundary values of a Sobolev
function u ∈ H1(Ω). Moreover, γ0 is compact into Lq(∂Ω) with 1 ≤ q < 2N−2

N−2
, if N > 2.

For the sake of notational simplicity, we decide to drop the use of the trace map γ0.
All restrictions of the Sobolev functions on ∂Ω are understood in the sense of traces.
Our hypotheses on the data of problem (1), involve the spectrum σ(−∆+ ξ(z)I) of the
differential operator u→ −∆u+ξ(z)u with Robin boundary condition. So, we consider
the following linear eigenvalue problem:

(2)

{
−∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω

∂u
∂n

+ β(z)u = 0 on ∂Ω.

Assume that ξ ∈ Ls(Ω) (s > N) and let γ : H1(Ω) → R be the C2-functional defined
by

γ(u) = ∥∇u∥22 +
∫
Ω

ξ(z)u2dz +

∫
∂Ω

β(z)u2dσ for all u ∈ H1(Ω).

The eigenvalue problem (2) has a smallest eigenvalue λ̂1 > −∞ given by

(3) λ̂1 = inf

[
γ(u)

∥u∥22
: u ∈ H1(Ω), u ̸= 0

]
.

Then we can find µ > 0 such that

(4) γ(u) + µ∥u∥22 ≥ c0∥u∥2 for all u ∈ H1(Ω), some c0 > 0 (see [4]).

If we use (4) and the spectral theorem for compact self-adjoint operators, we produce

the spectrum of (2), which consists of a sequence {λ̂k}k≥1 of eigenvalues such that

λ̂k → +∞ as k → +∞. By E(λ̂k) we denote the eigenspace corresponding to the

eigenvalue λ̂k. We have

E(λ̂k) ⊆ C1(Ω) (see Wang [17])
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and it has the unique continuation property (the UCP for short), that is, if u ∈ E(λ̂k)
and u(z) = 0 for all z in a set of positive measure, then u = 0 (see Motreanu-Motreanu-

Papageorgiou [8]). If Hm =
⊕m

k=1E(λ̂k) and Ĥm+1 = H
⊥
m =

⊕
k≥m+1E(λ̂k), then Hm

is finite dimensional and we have the following orthogonal direct sum decomposition

H ′(Ω) = Hm ⊕ Ĥm+1.

The higher eigenvalues {λ̂m}m≥2 have the following variational characterizations:

λ̂m = inf

[
γ(u)

∥u∥22
: u ∈ Ĥm, u ̸= 0

]
= sup

[
γ(u)

∥u∥22
: u ∈ Hm, u ̸= 0

]
, m ≥ 2.(5)

In both (3) and (5) the infimum (and for (5) also the supremum) is realized on the

corresponding eigenspace. Now, λ̂1 ∈ R is simple and has eigenfunctions of constant
sign. In fact, if û1 denotes the L

2-normalized (that is, ∥û1∥2 = 1) positive eigenfunction

corresponding to λ̂1, then û1(z) > 0 for all z ∈ Ω. We point out that all the other
eigenvalues have nodal (that is, sign changing) eigenfunctions.

Using (3) and (5) and the UCP of the eigenspaces, we get the following proposition.

Proposition 1. The following assertions hold:

(a) If η ∈ L∞(Ω), η(z) ≤ λ̂k for a.a. z ∈ Ω and the inequality is strict on a set of
positive measure, then there exists c1 > 0 such that

γ(u)−
∫
Ω

η(z)u2dz ≥ c1∥u∥2 for all u ∈ Ĥk.

(b) If η ∈ L∞(Ω), η(z) ≤ λ̂k for a.a. z ∈ Ω and the inequality is strict on a set of
positive measure, then there exists c2 > 0 such that

γ(u)−
∫
Ω

η(z)u2dz ≤ −c2∥u∥2 for all u ∈ Hk.

Moreover, we denote

m0 = min{m ∈ N : λ̂m > 0} (λ̂m0 = smallest positive eigenvalue),

k0 = max{m ∈ N : λ̂k < 0} (λ̂k0 = biggest negative eigenvalue).

If there are no negative eigenvalues, we set λ̂k0 = −∞.

The hypotheses on the data of (1) are the following:

H(ξ): ξ ∈ Ls(Ω) with s > N .
H(β): β ∈ W 1,∞(∂Ω) with β(z) ≥ 0 for all z ∈ ∂Ω.

Remark 1. When β ≡ 0 we recover the Neumann problem.

H(f): f : Ω× R → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω,
and
(i) |f(z, x)| ≤ a(z)(1 + |x|) for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω)+;
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(ii) if F (z, x) =
∫ x
0
f(z, s)ds, then there exists a measurable set D ⊆ Ω with

|D|N > 0 (where | · |N denote the Lebesgue measure on RN) and ϑ ∈ L1(Ω)
such that

F (z, x) → +∞ for a.a. z ∈ D as x→ ±∞,

F (z, x) ≥ ϑ(z) for a.a. z ∈ Ω, all x ∈ R;
(iii) there exists η ∈ L∞(Ω)+ such that

η(z) ≤ λ̂m0 for a.a. z ∈ Ω, η ̸≡ λ̂m0 ,

(f(z, x)− f(z, x′))(x− x′) ≤ η(z)(x− x′)2 for a.a. z ∈ Ω, all x, x′ ∈ R;
(iv) there exist δ > 0 and η0 ∈ L∞(Ω) with η0(z) ≤ 0 for a.a. z ∈ Ω, η0 ̸≡ 0 and

λ̂k0
2
x2 ≤ F (z, x) ≤ η0(z)

2
x2 for a.a. z ∈ Ω, all |x| ≤ δ.

Remark 2. If λ̂k0 = −∞, then there is no lower bound for F (z, ·) on [−δ, δ].
H0: 0 ∈ σ(−∆+ ξ(z)I).

Remark 3. This means thatH0 ̸= {0}, whereH0 = E(0) is the eigenspace corresponding
to the eigenvalue 0.

The energy (Euler) functional of problem (1) is defined by

φ(u) =
1

2
γ(u)−

∫
Ω

F (z, u)dz for all u ∈ H1(Ω).

Evidently φ ∈ C1(H1(Ω)). Recall that

H1(Ω) = Y ⊕H+

with Y = H− ⊕H0, where H− = ⊕k0
i=1E(λ̂i) and H+ = ⊕i≥m0E(λ̂i) = V .

So, every u ∈ H1(Ω) admits a unique sum decomposition

u = u+ u0 + û

with u ∈ H−, u
0 ∈ H0, û ∈ H+ = V .

Proposition 2. If hypotheses H(ξ), H(β), H(f) hold, then there exists a continuous
map τ : Y → V such that

φ(y + τ(y)) = inf{φ(y + v) : v ∈ V } for all y ∈ Y.

Proof. Fix y ∈ Y and consider the C1-functional φy : H
1(Ω) → R defined by

φy(u) = φ(y + u) for all u ∈ H1(Ω).

Consider the embedding map iV : V → H1(Ω) and set

φ̃y = φy ◦ iV .
Clearly φ̃y is C1 and from the chain rule we have

(6) φ̃′
y = pV ∗ ◦ φ′

y

with pV ∗ being the orthogonal projection of H1(Ω)∗ onto V ∗. Let ⟨·, ·⟩V denote the
duality brackets for the pair (V ∗, V ) and define A : H1(Ω) → H1(Ω)∗ by ⟨A(u), h⟩ =∫
Ω
(∇u,∇h)RNdz for all u, h ∈ H1(Ω). We have

⟨φ̃′
y(v)− φ̃′

y(v̂), v − v̂⟩V
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= ⟨φ′
y(v)− φ′

y(v̂), v − v̂⟩ (see (6))

= γ(v − v̂)−
∫
Ω

(f(z, v)− f(z, v̂))(v − v̂)dz

≥ γ(v − v̂)−
∫
Ω

η(z)(v − v̂)2dz (see hypothesis H(f)(iii))

≥ c1∥v − v̂∥2 for some c1 > 0 (see Proposition 1)(7)

⇒ φ̃′
y(·) is strongly monotone, therefore φ̃y(·) is strictly convex.

Also, we have

⟨φ̃′
y(v), v⟩V = ⟨φ̃′

y(v)− φ̃′
y(0), v⟩V + ⟨φ̃′

y(0), v⟩V
≥ c1∥v∥2 − c2∥v∥ for some c2 > 0 (see (7)),(8)

⇒ φ̃′
y(·) is coercive.(9)

The monotonicity and continuity of φ̃′
y(·), imply that

(10) φ̃′
y(·) is maximal monotone.

Then (9), (10) and Corollary 3.2.31, p. 319, of Gasiński-Papageorgiou [5], imply that

φ̃′
y(·) is surjective.

Therefore, we can find v0 ∈ V such that

(11) φ̃′
y(v0) = 0.

Moreover, the strong monotonicity property of φ̃′
y (see (7)) implies that v0 ∈ V in (11)

is unique (in fact v0 is the unique minimizer of the strictly convex functional φ̃y = φy
∣∣
V
).

Now let τ : Y → V be the map which to each y ∈ Y assigns this unique solution v0,
that is, τ(y) = v0. Then from (6), (11) and the previous discussion we have

(12) pV ∗φ′(y + τ(y)) = 0, φ(y + τ(y)) = inf{φ(y + v) : v ∈ V }.
We need to show the continuity of τ(·). Assume that yn → y in Y . We have

0 = ⟨φ̃′
yn(τ(yn)), τ(yn)⟩V (see (12) and (6))

≥ c1∥τ(yn)∥2 − c2∥τ(yn)∥ (see (8))

⇒ {τ(yn)}n≥1 ⊆ V is bounded.

So, we may assume that

τ(yn)
w−→ ṽ in H1(Ω).

The Sobolev embedding theorem and the compactness of the trace map imply that
φ is sequentially weakly lower semicontinuous. Hence

(13) φ(y + ṽ) ≤ lim inf
n→+∞

φ(yn + τ(yn)).

From (12) we have

φ(yn + τ(yn)) ≤ φ(yn + v) for all v ∈ V , all n ∈ N,
⇒ φ(y + ṽ) ≤ lim

n→+∞
φ(yn + v) = φ(y + v) for all v ∈ V (see (13)),

⇒ φ(y + ṽ) = inf{φ(y + v) : v ∈ V },
⇒ ṽ = τ(y).
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From the Urysohn criterion for the convergence of sequences, we have for the original
sequence that

(14) τ(yn)
w−→ τ(y) in H1(Ω) and τ(yn) → τ(y) in L2(Ω) and in L2(∂Ω).

For all n ∈ N, we have

0 = ⟨φ′(yn + τ(yn)), τ(yn)− τ(y)⟩ (see (12))

⇒ ⟨A(yn + τ(yn)), τ(yn)− τ(y)⟩+
∫
Ω

ξ(z)(yn + τ(yn))(τ(yn)− τ(y))dz

+

∫
∂Ω

β(z)(yn + τ(yn))(τ(yn)− τ(y))dσ = 0,

⇒ lim sup
n→+∞

⟨A(yn + τ(yn)), τ(yn)− τ(y)⟩ ≤ 0,

⇒ ∥∇(yn + τ(yn))∥2 → ∥∇(y + τ(y))∥2 (recall A is monotone),

⇒ yn + τ(yn) → y + τ(y) in H1(Ω) (by the Kadec-Klee property),

⇒ τ(yn) → τ(y) in H1(Ω),

⇒ τ(·) is continuous.

□

Let φ̂(y) = φ(y + τ(y)) for all y ∈ Y .

Proposition 3. If hypotheses H(ξ), H(β), H(f) hold, then φ̂ ∈ C1(Y,R) and φ̂′(y) =
pY ∗φ′(y + τ(y)).

Proof. Let y, h ∈ Y and t > 0. We have

1

t
[φ̂(y + th)− φ̂(y)]

≤ 1

t
[φ(y + th+ τ(y))− φ(y + τ(y))],

⇒ lim sup
t→0+

1

t
[φ̂(y + th)− φ̂(y)] ≤ ⟨φ′(y + τ(y)), h⟩.(15)

Also, we have

1

t
[φ̂(y + th)− φ̂(y)]

≥ 1

t
[φ(y + th+ τ(y + th))− φ(y + τ(y + th))],

⇒ lim inf
t→0+

1

t
[φ̂(y + th)− φ̂(y)] ≥ ⟨φ′(y + τ(y)), h⟩.(16)

(recall τ(·) is continuous, see Proposition 2).

From (15) and (16) it follows that

(17) lim
t→0+

1

t
[φ̂(y + th)− φ̂(y)] = ⟨φ′(y + τ(y), h⟩ for all h ∈ Y.

In a similar fashion, we show that

(18) lim
t→0−

1

t
[φ̂(y + th)− φ̂(y)] = ⟨φ′(y + τ(y), h⟩ for all h ∈ Y.
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From (17) and (18) it follows that

φ̂ ∈ C1(Y,R) and φ̂′(y) = pY ∗φ′(y + τ(y)).

□

Proposition 4. For every ε > 0, we can find rε > 0 such that∣∣{z ∈ Ω : |u0(z)| < rε∥u0∥
}∣∣
N
< ε for all u0 ∈ H0.

Proof. We proceed by contradiction. So, suppose that the proposition is not true. Then
we can find ε > 0 and {u0n}n∈N ⊆ H0 such that

(19)

∣∣∣∣{z ∈ Ω : |u0n(z)| <
1

n
∥u0n∥

}∣∣∣∣
N

≥ ε for all n ∈ N.

Let y0n =
u0n

∥u0n∥
, n ∈ N. Then y0n ∈ H0, ∥y0n∥ = 1 for all n ∈ N. Exploiting the finite

dimensionality of H0 and by passing to a subsequence if necessary, we may assume that

(20) y0n → y0 ∈ H0 in H1(Ω), hence ∥y0∥ = 1.

If

En =

{
z ∈ Ω : |u0n(z)| <

1

n
∥u0n∥

}
=

{
z ∈ Ω : |y0n(z)| <

1

n

}
,

E =
{
z ∈ Ω : |y0(z)| = 0

}
,

then from (20) we have

lim sup
n→+∞

En ⊆ E,

⇒ ε ≤ lim sup
n→+∞

|En|N ≤ |E|N .

But y0 ∈ H0 and by the UCP we have

y(z) ̸= 0 for a.a. z ∈ Ω (see (20)),

⇒ |E|N = 0, a contradiction.

□

Using this proposition, we can establish the following useful property of the functional
φ̂.

Proposition 5. If hypotheses H(ξ), H(β), H(f), H0 hold, then φ̂(y) → −∞ as ∥y∥ →
+∞ (that is, φ̂ is anticoercive).

Proof. Again we argue indirectly. So, suppose we can find M1 > 0 and {yn}n≥1 ⊆ Y
such that

(21) ∥yn∥ → +∞ and −M1 ≤ φ̂(yn) for all n ∈ N.
From Tang-Wu [16, Lemmata 2 and 3], given ε > 0, we can find Dε ⊆ D measurable,

g ∈ C(R,R), g ≥ 0, subadditive and ζ ∈ L1(D)+ such that

|Dε|N > 0, |D \Dε|N < ε,(22)

F (z, x) ≥ g(x)− ζ(z) for a.a. z ∈ Dε, all x ∈ R,(23)

g(·) is coercive (that is g(x) → +∞ as x→ ±∞),(24)

|g(x)| ≤ 4 + |x| for all x ∈ R.(25)
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Recall Y = H− ⊕H0 and yn ∈ Y for all n ∈ N. So, we can write in a unique way

yn = yn + y0n with yn ∈ H−, y
0
n ∈ H0.

Then from (21) and the orthogonality of the component spaces, we have

−M1 ≤ φ̂(yn) ≤ φ(yn)

≤ γ(yn)−
∫
Ω

F (z, yn)dz

≤ −c3∥yn∥2 −
∫
Ω

F (z, yn)dz for some c3 > 0

(since yn ∈ H− and dim H− < +∞)

≤ −c3∥yn∥2 −
∫
Dε

g(yn)dz +

∫
Dε

ζ(z)dz + ∥ϑ∥1

(see (23) and hypothesis H(f)(ii))

≤ −c3∥yn∥2 + c4 for some c4 > 0 (recall g ≥ 0),

⇒ {yn}n≥1 ⊆ H− is bounded.(26)

We have
∥yn∥ ≤ ∥yn∥+ ∥y0n∥ for all n ∈ N.

From (21) and (26) it follows that

(27) ∥y0n∥ → +∞.

We fix δ > 0. Proposition 4 implies that we can find rδ > 0 such that

(28)
∣∣{z ∈ Ω : |u0(z)| < rδ∥u0∥

}∣∣
N
< δ for all u0 ∈ H0 = E(0).

We set
En =

{
z ∈ Ω : |y0n(z)| ≥ rδ∥y0n∥

}
for all n ∈ N.

From (28) it follows that

(29) |Ω \ En|N < δ for all n ∈ N.
Recall that H− is finite dimensional. So, we can find M2 > 0 such that

(30) ∥yn∥∞ ≤M2 for all n ∈ N (see (26)).

Because of (24), given any k > 0, we can find M3 =M3(k) > 0 such that

(31) g(x) ≥ k for all |x| ≥M3.

Let
Cn = {z ∈ Ω : |yn(z)| ≥M3} for all n ∈ N.

From (30) and since yn = y0n + yn, we have

|yn(z)| ≥ |y0n(z)| − |yn(z)|
≥ rδ∥y0n∥ −M2 for a.a. z ∈ En, all n ∈ N,

⇒ |yn(z)| ≥M3 for all n ≥ n0 (see (27)),

⇒ En ⊆ Cn for all n ≥ n0.(32)

We have∫
Dε

g(yn)dz =

∫
Dε∩Cn

g(yn)dz +

∫
Dε\Cn

g(yn)dz
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≥
∫
Dε∩En

g(yn)dz (recall that g ≥ 0 and see (31), (32))

≥ k|Dε ∩ En|N for all n ≥ n0.(33)

Note that

|Dε ∩ En|N = |Dε|N − |Dε \ En|N
≥ |Dε|N − |Ω \ En|N
≥ |Dε|N − δ (see (29)).

Choosing δ > 0 small we have

(34) |Dε ∩ En|N > 0 for all n ≥ n0.

Returning to (33) and using (34) and the fact that k > 0 is arbitrary, we conclude
that

(35)

∫
Dε

g(yn)dz → +∞.

Recall that

φ̂(yn) ≤ −c3∥yn∥2 −
∫
Dε

g(yn)dz + c5 for some c5 > 0, all n ∈ N

⇒ φ̂(yn) → −∞ as n→ +∞ (by (35)),

a contradiction to (21). This proves the anticoercivity of φ̂. □

3. Multiplicity Theorem

In this section, we prove the existence of two solutions for problem (1).
Let ψ = −φ̂. Then ψ is coercive (see Proposition 5) and so we can state the following

result.

Proposition 6. If hypotheses H(ξ), H(β), H(f), H0 hold, then ψ has local linking at
u = 0 with respect to H− ⊕H0.

Proof. Let u0 ∈ H0. Exploiting the orthogonality of the component spaces, we have

ψ(u0) = −φ̂(u0) = −φ(u0 + τ(u0))

= −1

2
γ(u0 + τ(u0)) +

∫
Ω

F (z, u0 + τ(u0))dz.(36)

Hypotheses H(f)(i), (iv) imply that given r ∈ (2, 2∗), we can find c6 = c6(r) > 0 such
that

(37) F (z, x) ≤ η0(z)

2
x2 + c6|x|r for a.a. z ∈ Ω, all x ∈ R.

Using (37) in (36) we obtain

ψ(u0) ≤ −1

2
γ(u0 + τ(u0)) +

1

2

∫
Ω

η0(z)(u
0 + τ(u0))2dz + c7∥u0 + τ(u0)∥r

for some c7 > 0,

≤ −c8∥u0 + τ(u0)∥2 + c7∥u0 + τ(u0)∥r for some c8 > 0.(38)
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For every û ∈ H+ we have

φ(û) =
1

2
γ(û)−

∫
Ω

F (z, û)dz

≥ 1

2
γ(û)− 1

2

∫
Ω

η(z)û2dz (see hypothesis H(f)(iii))

≥ c9∥û∥2 for some c9 > 0 (see Proposition 1),(39)

⇒ inf
H+

φ = 0.(40)

We have

φ̂(0) = φ(0 + τ(0)) = φ(τ(0)) = 0 (see (40)),

⇒ τ(0) = 0 (see (39)).

So, from (38) and the continuity of τ(·) (see Proposition 2) it follows that we can find
ρ1 > 0 such that

(41) ψ(u0) ≤ 0 for all u0 ∈ H0, ∥u0∥ ≤ ρ1.

Next let u ∈ H−. Then

ψ(u) = −φ̂(u) ≥ −φ(u)

= −1

2
γ(u) +

∫
Ω

F (z, u)dz

≥ − λ̂k0
2

∥u∥22 +
∫
Ω

F (z, u)dz.(42)

Since H− is finite dimensional, all norms are equivalent. So, we can find ρ2 > 0 such
that

∥u∥ ≤ ρ2 ⇒ |u(z)| ≤ δ for a.a. z ∈ Ω.

Therefore from hypothesis H(f)(iv) we have

F (z, u(z)) ≥ λ̂k0
2
u(z)2 for a.a. z ∈ Ω.

Using this in (42) we obtain

(43) ψ(u) ≥ 0 for all u ∈ H−, ∥u∥ ≤ ρ2.

From (41) and (43) we conclude that ψ has local linking at u = 0 with respect to
H− ⊕H0. □

Let Kφ := {u ∈ Y : φ′(u) = 0}.

Proposition 7. If hypotheses H(ξ), H(β), H(f), H0 hold, then y ∈ Kφ̂ if and only if
y + τ(y) ∈ Kφ.

Proof. ⇐: is immediate from Proposition 3.
⇒: Let y ∈ Kφ̂. Then

φ̂′(y) = 0,

⇒ pY ∗φ′(y + τ(y)) = 0 (see Proposition 3),(44)

⇒ φ′(y + τ(y)) ∈ H∗
+ (recall H1(Ω)∗ = Y ∗ ⊕H∗

+).
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From (12) we have

φ′(y + τ(y)) ∈ Y ∗

⇒ φ′(y + τ(y)) = 0 (see (44)),

⇒ y + τ(y) ∈ Kφ.

□

Now we are ready for the multiplicity theorem which gives two nontrivial solutions
for problem (1).

Theorem 1. If hypotheses H(ξ), H(β), H(f), H0 hold, then problem (1) has at least
two nontrivial solutions u0, û ∈ C1(Ω), u0 ̸= û.

Proof. Note that ψ = −φ̂ is coercive (see Proposition 5), hence

ψ satisfies the PS-condition and its bounded below, ψ(0) = 0.

In addition from Proposition 6 we have that

ψ has local linking at u = 0 with respect to H− ⊕H0.

If infY ψ = 0, then all u0 ∈ H0 with ∥u0∥ ≤ ρ = min{ρ1, ρ2} are critical points of ψ
(see (41)). Hence by Proposition 7 we have an infinity of solutions.

If infY ψ < 0, then we apply the theorem of Brezis-Nirenberg [3] and have

y0, ŷ ∈ Kψ = Kφ̂, y0 ̸= ŷ, y0, ŷ ̸= 0,

⇒ u0 = y0 + τ(y0), û = ŷ + τ(ŷ) ∈ Kφ, u0 ̸= û, u0, û ̸= 0 (see Proposition 7).

Note that hypotheses H(f) imply that

(45) |f(z, x)| ≤ c10|x| for a.a. z ∈ Ω, all x ∈ R, some c10 > 0.

We have

φ′(u0) = 0,

⇒ ⟨A(u0), h⟩+
∫
Ω

ξ(z)u0hdz +

∫
∂Ω

β(z)u0hdσ =

∫
Ω

f(z, u0)hdz for all h ∈ H1(Ω),

⇒ −∆u0(z) + ξ(z)u0(z) = f(z, u0(z)) for a.a. z ∈ Ω,
(46)

∂u0
∂n

+ β(z)u0 = 0 on ∂Ω (see Papageorgiou-Rǎdulescu [11]).

Let

d0(z) =


f(z, u0(z))

u0(z)
if u0(z) ̸= 0,

0 otherwise.

Then d0 ∈ L∞(Ω) (see (45)). From (46) we have

−∆u0(z) = (d0(z)− ξ(z))u0(z) for a.a. z ∈ Ω,

∂u0
∂n

+ β(z)u0 = 0 on ∂Ω.

Note that (d0 − ξ)(·) ∈ Ls(Ω), s > N . Then using Lemmata 5.1 and 5.2 of Wang
[17], we have

u0 ∈ W 2,s(Ω) ↪→ C1,α(Ω) α = 1− N

s
> 0.
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The embedding of C1,α(Ω) into C1(Ω) implies u0 ∈ C1(Ω).
Similarly, we show û ∈ C1(Ω). □
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