We consider a semilinear Neumann problem with convection. We assume that the drift coefficient is indefinite. Using the theory of nonlinear operators of monotone type, together with truncation and comparison techniques and flow invariance arguments, we prove a multiplicity theorem producing three nontrivial smooth solutions (positive, negative and nodal).
Papageorgiou N.S., Vetro C., & Vetro F. (2020). Multiple solutions with sign information for semilinear Neumann problems with convection. REVISTA MATEMATICA COMPLUTENSE, 33(1), 19-38.
Data di pubblicazione: | 2020 |
Titolo: | Multiple solutions with sign information for semilinear Neumann problems with convection |
Autori: | |
Citazione: | Papageorgiou N.S., Vetro C., & Vetro F. (2020). Multiple solutions with sign information for semilinear Neumann problems with convection. REVISTA MATEMATICA COMPLUTENSE, 33(1), 19-38. |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s13163-019-00312-3 |
Abstract: | We consider a semilinear Neumann problem with convection. We assume that the drift coefficient is indefinite. Using the theory of nonlinear operators of monotone type, together with truncation and comparison techniques and flow invariance arguments, we prove a multiplicity theorem producing three nontrivial smooth solutions (positive, negative and nodal). |
URL: | https://link.springer.com/article/10.1007/s13163-019-00312-3 |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Papageorgiou2020_Article_MultipleSolutionsWithSignInfor (1).pdf | Articolo principale | Versione Editoriale | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.