We consider a semilinear Neumann problem with convection. We assume that the drift coefficient is indefinite. Using the theory of nonlinear operators of monotone type, together with truncation and comparison techniques and flow invariance arguments, we prove a multiplicity theorem producing three nontrivial smooth solutions (positive, negative and nodal).
Papageorgiou N.S., Vetro C., Vetro F. (2020). Multiple solutions with sign information for semilinear Neumann problems with convection. REVISTA MATEMATICA COMPLUTENSE, 33(1), 19-38 [10.1007/s13163-019-00312-3].
Multiple solutions with sign information for semilinear Neumann problems with convection
Vetro C.;
2020-01-01
Abstract
We consider a semilinear Neumann problem with convection. We assume that the drift coefficient is indefinite. Using the theory of nonlinear operators of monotone type, together with truncation and comparison techniques and flow invariance arguments, we prove a multiplicity theorem producing three nontrivial smooth solutions (positive, negative and nodal).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Papageorgiou2020_Article_MultipleSolutionsWithSignInfor (1).pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
345.64 kB
Formato
Adobe PDF
|
345.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10447_400186-post-print.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
343.03 kB
Formato
Adobe PDF
|
343.03 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.