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Abstract. We consider a semilinear Neumann problem with convection. We as-
sume that the drift coefficient is indefinite. Using the theory of nonlinear operators of
monotone type, together with truncation and comparison techniques and flow invari-
ance arguments, we prove a multiplicity theorem producing three nontrivial smooth
solutions (positive, negative and nodal).

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study
the following semilinear Neumann problem with convection

(1) −∆u(z) + ξ(z)u(z) = r(z)|∇u(z)|+ f(z, u(z)) in Ω,
∂u

∂n

∣∣∣
∂Ω

= 0.

For the potential function ξ(z) we make the following hypothesis

H(ξ): ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω, ξ 6≡ 0.

For the drift coefficient r ∈ L∞(Ω), the precise conditions are given just before equa-
tion (3).

In this problem the potential function ξ ∈ L∞(Ω), ξ(z) ≥ 0 for a.a. z ∈ Ω, ξ 6≡ 0. The
drift coefficient r ∈ L∞(Ω) and in general is sign changing. The perturbation f(z, x) is
a Carathéodory function (that is, for all x ∈ R z → f(z, x) is measurable and for a.a.
z ∈ Ω x → f(z, x) is continuous). We assume that f(z, ·) exhibits linear growth near
±∞.

Our aim is to prove a multiplicity theorem for problem (1) providing sign information
for all the solutions. So, we prove a three solutions theorem, producing two solutions
of constant sign (one positive and the other negative) and a third solution which is
nodal (sign changing). The presence of the drift term r(z)|∇u| makes problem (1)
nonvariational. Hence our approach is topological based on the theory of nonlinear
operators of monotone type, combined with appropriate truncation and comparison
techniques and flow invariance arguments.

In the past, the works on the subject either produced only positive solutions or non-
trivial solutions with no sign information, primarly for Dirichlet problems. We mention
the semilinear works of Amann-Crandall [1], de Figueiredo-Girardi-Matzeu [6], Gasiński-
Papageorgiou [8], Girardi-Matzeu [9], Matzeu-Servadei [15], Papageorgiou-Rǎdulescu-
Repovš [20], Yan [25] and the nonlinear works of Bai [2], Bai-Gasiński-Papageorgiou
[3], Faraci-Motreanu-Puglisi [5], Papageorgiou-Vetro-Vetro [21], Ruiz [23]. The only
work proving the existence of nodal solutions is the recent one by Liu-Shi-Wei [13] for
semilinear Dirichlet problems. They consider a problem with a superlinear reaction and
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the gradient term can not be decoupled from the perturbation. The reaction is a C1

function on Ω× R× RN . Their approach uses the Nehari manifold.

2. Mathematical Background - Auxiliary Results

Let X be a reflexive Banach space. By X∗ we denote the topological dual of X and
by 〈·, ·〉 the duality brackets for the pair (X∗, X). An operator V : X → X∗ is said to
be “pseudomonotone”, if it satisfies the following condition:

un
w−→ u in X , V (un)

w−→ u∗ in X∗ and lim sup
n→+∞

〈V (un), un − u〉 ≤ 0

imply that u∗ = V (u) and 〈V (un), un〉 → 〈V (u), u〉.

This class of pseudomonotone operators extends the class of maximal monotone ones.
Indeed, an everywhere defined maximal monotone map A : X → X∗ is pseudomonotone
(see Gasiński-Papageorgiou [7], Proposition 3.2.51, p. 334). Similarly to maximal mono-
tone maps, pseudomonotone operators have remarkable surjectivity properties. Recall
that a map V : X → X∗ is said to be “coercive”, if the following property holds

〈V (u), u〉
‖u‖

→ +∞ as ‖u‖ → +∞, u ∈ X.

The following theorem demonstrates the surjectivity properties of pseudomonotone
operators (see Gasiński-Papageorgiou [7], Theorem 3.2.52, p. 336).

Theorem 1. If V : X → X∗ is pseudomonotone, coercive, then V (·) is surjective.

Let Y be a Banach space. By an “order cone”, we understand a nonempty, closed,
convex set P ⊆ Y such that λP ⊆ P for all λ ≥ 0 and P ∩ (−P ) = {0}. The cone
induces an order ≤ on Y by

for all y, v ∈ Y y ≤ v if and only if v − y ∈ P .

We write Ṗ = P \ {0} and if intP 6= ∅, then we say that P is a “solid cone”. Given
a map K : Y → Y we define:

(a) K(·) is “increasing” if and only if y ≤ v ⇒ K(y) ≤ K(v).
(b) When P is solid K(·) is “strongly increasing” if and only if

v − y ∈ Ṗ ⇒ K(v)−K(y) ∈ intP.

We say that K : Y → Y is positively 1-homogeneous if K(λy) = λK(y) for all λ ≥ 0,
all y ∈ Y . A pair (λ, y) ∈ R × Y is said to be a “positive eigenpair” for K(·) if λ > 0
and y ∈ intP .

From Marano-Papageorgiou [14] (Proposition 2.1) we have:

Proposition 1. If Y is an ordered Banach space with a solid order cone P and y0 ∈
intP , then for every v ∈ P , we can find λv > 0 such that v ≤ λvy0.

Let γ : H1(Ω)→ R be the C1-functional defined by

γ(u) = ‖∇u‖2
2 +

∫
Ω

ξ(z)u2dz for all u ∈ H1(Ω).

The following inequality will be useful in what follows (see Papageorgiou-Rǎdulescu-
Repovš [19], Lemma 2.8).



MULTIPLE SOLUTIONS WITH SIGN INFORMATION FOR SEMILINEAR NEUMANN PROBLEMS3

Lemma 1. If hypotheses H(ξ) hold, then there exists c0 > 0 such that

c0‖u‖2 ≤ ‖∇u‖2
2 +

∫
Ω

ξ(z)u2dz for all u ∈ H1(Ω).

Hereafter by ‖ · ‖ we denote the norm of the Sobolev space H1(Ω) defined by

‖u‖ =
[
‖u‖2

2 + ‖∇u‖2
2

]1/2
for all u ∈ H1(Ω).

We consider the following linear eigenvalue problem:

−∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω,
∂u

∂n

∣∣∣
∂Ω

= 0.

We know that the spectrum of this eigenvalue problem is a sequence {λ̂k}k≥1 of eigenval-

ues such that λ̂k → +∞ as k → +∞ and the corresponding eigenfunctions ûk ∈ C1(Ω).

For the first (smallest) eigenvalue λ̂1, we have:

λ̂1 > 0 and it is simple;

λ̂1 = inf

[
γ(u)

‖u‖2
2

: u ∈ H1(Ω), u 6= 0

]
.(2)

Then the elements of the corresponding one-dimensional eigenspace have constant
sign. These facts lead to the following useful lemma (see Mugnai-Papageorgiou [16],
Lemma 4.11).

Lemma 2. If ϑ ∈ L∞(Ω)+ and ϑ(z) ≤ λ̂1 for a.a. z ∈ Ω with strict inequality on a set
of positive measure, then there exists c1 > 0 such that

c1‖u‖2 ≤ γ(u)−
∫

Ω

ϑ(z)u2dz for all u ∈ H1(Ω).

In what follows A ∈ L(H1(Ω), H1(Ω)∗) is defined by

〈A(u), v〉 =

∫
Ω

(∇u,∇v)RNdz for all u, v ∈ H1(Ω).

For x ∈ R, we set x± = max{±x, 0}. Given u ∈ H1(Ω), we define u±(·) = u(·)±. We
know that

u± ∈ H1(Ω), u = u+ − u−, |u| = u+ + u−.

Also, if g : Ω × R → R is a measurable function (for example, a Carathéodory
function), by Ng we denote the Nemitsky operator associated with the function g, that
is,

Ng(u)(·) = g(·, u(·))
for every measurable function u : Ω→ R.

Also, if Y, Z are Banach spaces, a map G : Y → Z is said to be “compact” if it is
continuous and maps bounded sets in Y into relatively compact sets in Z.

If u, v ∈ H1(Ω) and v ≤ u, then we define

[v, u] = {w ∈ H1(Ω) : v(z) ≤ w(z) ≤ u(z) for a.a. z ∈ Ω}.

By intC1(Ω)[v, u] we denote the interior of [v, u] in the C1(Ω)-norm topology.

Finally if ϕ ∈ C1(H1(Ω),R), then

Kϕ = {u ∈ H1(Ω) : ϕ′(u) = 0} (the critical set of ϕ).
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In addition to the Sobolev space H1(Ω), in the analysis of problem (1) we will also
use the Banach space C1(Ω). This is an ordered Banach space with order (positive)
cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.
This order cone is solid, that is, intC+ 6= ∅. In fact intC+ contains the open set

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}. Note that D+ is the interior of C+ when
C1(Ω) is furnished with the relative C1(Ω)-norm topology.

The hypotheses on the drift coefficient are:

H(r): r ∈ L∞(Ω) and ‖r‖∞ < λ̂
1/2
1 .

We start by considering the following Neumann problem:

(3) −∆u(z) + ξ(z)u(z) = r(z)|∇u(z)|+ h(z) in Ω,
∂u

∂n

∣∣∣
∂Ω

= 0.

Proposition 2. If hypotheses H(ξ), H(r) hold and h ∈ L∞(Ω), then problem (3) has
a unique solution K(h) ∈ C1(Ω); moreover, if h ≥ 0 (resp. h ≤ 0), h 6≡ 0, then
K(h) ∈ D+ (resp. K(h) ∈ −D+).

Proof. Let V : H1(Ω)→ H1(Ω)∗ be the nonlinear operator defined by

〈V (u), y〉 = 〈A(u), y〉+

∫
Ω

ξ(z)uydz −
∫

Ω

r(z)|∇u|ydz for all u, y ∈ H1(Ω).

Claim 1: V (·) is pseudomonotone.
Let {un}n≥1 ⊆ H1(Ω) and assume that

(4) un
w−→ u in H1(Ω), V (un)

w−→ u∗ in H1(Ω)∗, and lim sup
n→+∞

〈V (un), un − u〉 ≤ 0.

From (4) we have un → u in L2(Ω).
Therefore we have∫

Ω

ξ(z)un(un − u)dz → 0 and

∫
Ω

r(z)|∇un|(un − u)dz → 0.

So, from (4) we have

lim sup
n→+∞

〈A(un), un − u〉 ≤ 0,

⇒ lim sup
n→+∞

‖∇un‖2 ≤ ‖∇u‖2.

On the other hand since un
w−→ u in H1(Ω), we have

‖∇u‖2 ≤ lim inf
n→+∞

‖∇un‖2,

⇒ ‖∇un‖2 → ‖∇u‖2,

⇒ un → u in H1(Ω) (by the Kadec-Klee property, see (4)).(5)

Then it follows that

V (un)→ V (u) in H1(Ω) (see (5)),

⇒ u∗ = V (u) and 〈V (un), un〉 → 〈V (u), u〉.

Hence V (·) is pseudomonotone and this proves Claim 1.

Claim 2: V (·) is coercive.
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For every u ∈ H1(Ω), we have

〈V (u), u〉 = ‖∇u‖2
2 +

∫
Ω

ξ(z)u2dz −
∫

Ω

r(z)|∇u|udz,

≥ γ(u)− ‖r‖∞‖∇u‖2‖u‖2

(see H(r) and use the Cauchy-Schwarz inequality)

≥ γ(u)− ‖r‖∞γ(u)1/2

(
γ(u)

λ̂1

)1/2

(see (2))

=

[
1− ‖r‖∞

λ̂
1/2
1

]
γ(u),

⇒ V (·) is coercive (see hypothesis H(r)).

This proves Claim 2.
On account of Claims 1 and 2 and invoking Theorem 1, we have that V (·) is surjective.

Thus we can find u ∈ H1(Ω) such that

(6) V (u) = h in H1(Ω)∗.

In fact this solution is unique. Indeed, if v ∈ H1(Ω) is another such solution, then

‖∇(u− v)‖2
2 +

∫
Ω

ξ(z)(u− v)2dz −
∫

Ω

r(z)[|∇u| − |∇v|](u− v)dz = 0,

⇒ γ(u− v)− ‖r‖∞
∫

Ω

|∇(u− v)||u− v|dz ≤ 0,

⇒

[
1− ‖r‖∞

λ̂
1/2
1

]
γ(u− v) ≤ 0,

⇒ u = v (see hypothesis H(r) and Lemma 1).

So, we have proved that the solution u of (6) is unique.
From (6) we have

〈A(u), y〉+

∫
Ω

ξ(z)uydz =

∫
Ω

r(z)|∇u|ydz +

∫
Ω

hydz for all y ∈ H1(Ω),(7)

⇒ −∆u(z) + ξ(z)u(z) = r(z)|∇u(z)|+ h(z) for a.a. z ∈ Ω,
∂u

∂n

∣∣∣
∂Ω

= 0.(8)

(see Papageorgiou-Rǎdulescu [18]).

From (8) and Theorem 4.1 of Winkert [24], we have u ∈ L∞(Ω).
So, we can apply Theorem 2 of Lieberman [12] and have

u = K(h) ∈ C1,α(Ω) for some α ∈ (0, 1).

If h ≥ 0, h 6= 0, then u = K(h) 6= 0 and from (7) with y = −u− ∈ H1(Ω), we obtain

‖∇u−‖2
2 +

∫
Ω

ξ(z)(u−)2dz +

∫
Ω

r(z)|∇u−|u−dz =

∫
Ω

h(−u−)dz ≤ 0,

⇒ γ(u−)− ‖r‖∞‖∇u−‖2‖u−‖2 ≤ 0,

⇒

[
1− ‖r‖∞

λ̂
1/2
1

]
γ(u−) ≤ 0 (see (2))
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⇒ c1‖u−‖2 ≤ 0 for some c1 > 0 (see hypothesis H(r) and Lemma 1),

⇒ u ≥ 0, u 6= 0.

Therefore u = K(h) ∈ C+ \ {0}. From (8) we have

∆u(z) ≤ ‖r‖∞|∇u(z)|+ ξ(z)u(z) for a.a. z ∈ Ω (recall that h ≥ 0).

Applying Theorem 5.4.1, p. 111 of Pucci-Serrin [22] (the nonlinear strong maximum
principle), we infer that

u(z) > 0 for all z ∈ Ω.

Then the nonlinear boundary point theorem (see Pucci-Serrin [22], Theorem 5.5.1, p.
120), implies that u ∈ D+ ⊆ intC+.

In a similar fashion, we show that if h ≤ 0, h 6= 0, then K(h) ∈ −D+ ⊆ −intC+. �

We will need the following comparison result.

Proposition 3. If hypotheses H(ξ), H(r) hold, h1, h2 ∈ L∞(Ω), h1(z) ≤ h2(z) for a.a.
z ∈ Ω, and u1 = K(h1), u2 = K(h2) ∈ C1(Ω) (see Proposition 2), then u1 ≤ u2.

Proof. We have

‖∇(u1 − u2)+‖2
2 +

∫
Ω

ξ(z)[(u1 − u2)+]2dz −
∫

Ω

r(z)[|∇u1| − |∇u2|](u1 − u2)+dz

=

∫
Ω

(h1 − h2)(u1 − u2)+dz ≤ 0,

⇒ γ((u1 − u2)+)−
∫

Ω

‖r‖∞|∇(u1 − u2)+||(u1 − u2)+|dz ≤ 0,

⇒

[
1− ‖r‖∞

λ̂
1/2
1

]
γ((u1 − u2)+) ≤ 0,

⇒ u1 ≤ u2 (see hypothesis H(r) and Lemma 1).

�

We consider the solution map K : C+ → C+. The next proposition states the main
properties of this map.

Proposition 4. If hypotheses H(ξ), H(r) hold, then K(·) is increasing, compact and
positively 1-homogeneous.

Proof. From Proposition 3 we see that K(·) is increasing. Also, it is clear that K(·) is
positively 1-homogeneous. It remains to show that K(·) is compact. First we show that
K(·) is continuous. So, let hn → h in C+ and set un = K(hn), n ∈ N and u = K(h).
We have

(9) 〈A(un), y〉+

∫
Ω

ξ(z)unydz =

∫
Ω

r(z)|∇un|ydz +

∫
Ω

hnydz

for all y ∈ H1(Ω), all n ∈ N. Choose y = un. Then

γ(un) =

∫
Ω

r(z)|∇un|undz +

∫
Ω

hnundz

≤ ‖r‖∞‖∇un‖2‖un‖2 + ‖hn‖2‖un‖2 for all n ∈ N,
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⇒

[
1− ‖r‖∞

λ̂
1/2
1

]
γ(un) ≤ c2‖un‖ for some c2 > 0, all n ∈ N,

⇒ ‖un‖ ≤ c3 for some c3 > 0, all n ∈ N (using hypothesis H(r) and Lemma 1).

So, we may assume that

(10) un
w−→ u in H1(Ω) and un → u in L2(Ω).

In (9) we choose y = un−u and pass to the limit as n→ +∞. Using (10), we obtain

lim〈A(un), un − u〉 = 0,

⇒ ‖∇un‖2 → ‖∇u‖2,

⇒ un → u in H1(Ω) (by the Kadec-Klee property, see (10)).(11)

Passing to the limit as n→ +∞ in (9) and using (11), we have

〈A(u), y〉+

∫
Ω

ξ(z)uydz =

∫
Ω

r(z)|∇u|ydz +

∫
Ω

hydz for all y ∈ H1(Ω),

⇒ u = K(h),

⇒ un = K(hn)→ K(h) = u in H1(Ω).

From Winkert [24], we have

‖un‖∞ ≤ c4 for some c4 > 0, all n ∈ N.
So, Theorem 2 of Lieberman [12] implies that

(12) un ∈ C1,α(Ω) 0 < α < 1 and ‖un‖C1,α(Ω) ≤ c5 for some c5 > 0, all n ∈ N.

Exploiting the compact embedding of C1,α(Ω) into C1(Ω), from (12) and (11), we
have for the initial sequence that

un → u in C1(Ω),

⇒ K(·) is continuous.

Moreover, from the above argument it is clear that if B ⊆ C+ is bounded, then
K(B) ⊆ C+ is relatively compact. Therefore K(·) is a compact map. �

Remark 1. The same can be said for the map K : (−C+)→ (−C+).

Now we consider the following parametric Neumann problem

(13) −∆u(z) + ξ(z)u(z) = r(z)|∇u(z)|+ λ̃u(z) in Ω,
∂u

∂n

∣∣∣
∂Ω

= 0, λ̃ > 0.

Proposition 5. If hypotheses H(ξ), H(r) hold, then problem (13) has a unique solution

(eigenpair) (λ̃1, ũ1) with λ̃1 > 0, ũ1 ∈ intC+, ‖ũ1‖2 = 1.

Proof. If λ̃ > 0 and u solve (13), then

u = K(λ̃u) = λ̃K(u) (see Proposition 4).

Also, from Proposition 2 we know that if u 6= 0, then K(u) ∈ D+. So, by Proposition
1, we can find c6 > 0 such that c6u ≤ K(u). Hence, we can apply Theorem 3.1(3) of
Chang [4] (see also p. 544) and infer that problem (13) has a unique solution (eigenpair)

(λ̃1, ũ1) with λ̃1 > 0, ũ1 ∈ intC+, ‖ũ1‖2 = 1. �



8 NIKOLAOS S. PAPAGEORGIOU, CALOGERO VETRO, FRANCESCA VETRO

Remark 2. In a similar fashion, we can produce a unique solution pair (λ̃∗1, ṽ1) of (13)
such that

λ̃∗1 > 0, ṽ1 ∈ −intC+, ‖ṽ1‖2 = 1.

3. Solutions of Constant Sign

In this section we show the existence of positive and negative smooth solutions for
problem (1). Moreover, we show that there exist extremal constant sign solutions, that
is, a smallest positive solution and a biggest negative solution.

We impose the following conditions on the perturbation f(z, x).

H(f): f : Ω× R→ R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω
and
(i) |f(z, x)| ≤ a(z)[1 + |x|] for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω)+;

(ii) there exists a function ϑ ∈ L∞(Ω)+ such that if ξ0 = 1 − ‖r‖∞
λ̂

1/2
1

> 0 (see

hypothesis H(r)), then

ϑ(z) ≤ λ̂1ξ0 for a.a. z ∈ Ω, ϑ 6≡ λ̂1ξ0,

lim sup
x→±∞

f(z, x)

x
≤ ϑ(z) uniformly for a.a. z ∈ Ω;

(iii) there exists δ > 0 such that

f(z, x) ≥ λ̃1x for a.a. z ∈ Ω, all x ∈ [0, δ],

f(z, x) ≤ λ̃∗1x for a.a. z ∈ Ω, all x ∈ [−δ, 0].

Proposition 6. If hypotheses H(ξ), H(r), H(f) hold, then problem (1) admits two
nontrivial solutions of constant sign û ∈ D+ and v̂ ∈ −D+.

Proof. Let (λ̃1, ũ1) be the solution pair of problem (13) produced in Proposition 5. We
know that ũ1 ∈ D+. So, we can find t ∈ (0, 1) small such that

(14) tũ1(z) ∈ (0, δ] for all z ∈ Ω.

We set ũ∗ = tũ1 ∈ D+. We have

−∆ũ∗(z) + ξ(z)ũ∗(z) = r(z)|∇ũ∗(z)|+ λ̃1ũ∗(z)

≤ r(z)|∇ũ∗(z)|+ f(z, ũ∗(z)) for a.a. z ∈ Ω(15)

(see (14) and hypothesis H(f) (iii)).

Using ũ∗ ∈ D+ we introduce truncations of the perturbation f(z, ·) and of the drift
term. So, let f0 : Ω× R→ R be the Carathéodory function defined by

(16) f0(z, x) =

{
f(z, ũ∗(z)) if x ≤ ũ∗(z),

f(z, x) if ũ∗(z) < x.

Also let T : H1(Ω)→ L2(Ω) be the nonlinear operator defined by

(17) T (u)(z) =

{
r(z)|∇ũ∗(z)| if u(z) ≤ ũ∗(z),

r(z)|∇u(z)| if ũ∗(z) < u(z).

Evidently T (·) is continuous.
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We consider the following nonlinear Neumann problem

(18) −∆u(z) + ξ(z)u(z) = T (u)(z) + f0(z, u(z)) in Ω,
∂u

∂n

∣∣∣
∂Ω

= 0.

We introduce the nonlinear operator G : H1(Ω)→ H1(Ω)∗ defined by

〈G(u), y〉 = 〈A(u), y〉+

∫
Ω

ξ(z)uydz −
∫

Ω

T (u)ydz −
∫

Ω

f0(z, u)ydz for all y ∈ H1(Ω).

As in the proof of Proposition 2 (see Claim 1 in that proof), we can check that

(19) G(·) is pseudomonotone.

Hypotheses H(f) (i), (ii) and (16) imply that given ε > 0, we can find c7 = c7(ε) > 0
such that

(20) f0(z, x)x ≤ [ϑ(z) + ε]x2 + c7 for a.a. z ∈ Ω, all x ∈ R.

Let u ∈ H1(Ω). We have

(21) 〈G(u), u〉 = γ(u)−
∫

Ω

T (u)udz −
∫

Ω

f0(z, u)udz.

From (17) we have∫
Ω

T (u)udz =

∫
{u≤ũ∗}

r(z)|∇ũ∗|udz +

∫
{ũ∗<u}

r(z)|∇u|udz

≤ c8‖u‖+
‖r‖∞
λ̂

1/2
1

γ(u) for some c8 > 0.(22)

Moreover, using (20) we obtain

(23)

∫
Ω

f0(z, u)udz ≤
∫

Ω

[ϑ(z) + ε]u2dz + c9‖u‖ for some c9 > 0, all u ∈ H1(Ω).

Returning to (21) and using (22) and (23), we obtain

〈G(u), u〉 ≥ ξ0γ(u)−
∫

Ω

ϑ(z)u2dz − ε‖u‖2 − c10‖u‖ with c10 = c8 + c9 > 0

≥ c11‖u‖2 − c10‖u‖ for some c11 > 0, all u ∈ H1(Ω)

(use Lemma 2 and choose ε > 0 small),

⇒ G(·) is coercive.(24)

Then (19) and (24) permit the use of Theorem 1. So, we can find û ∈ H1(Ω) such
that

G(û) = 0,

⇒ 〈A(û), y〉+

∫
Ω

ξ(z)ûydz =

∫
Ω

T (û)ydz +

∫
Ω

f0(z, û)ydz for all y ∈ H1(Ω).(25)

In (24) we choose y = (ũ∗ − û)+ ∈ H1(Ω). Using (16) and (17), we obtain

〈A(û), (ũ∗ − û)+〉+

∫
Ω

ξ(z)û(ũ∗ − û)+dz

=

∫
Ω

r(z)|∇ũ∗|(ũ∗ − û)+dz +

∫
Ω

f(z, ũ∗)(ũ∗ − û)+dz
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≥ 〈A(ũ∗), (ũ∗ − û)+〉+

∫
Ω

ξ(z)ũ∗(ũ∗ − û)+dz (see (15)),

⇒ γ((ũ∗ − û)+) ≤ 0,

⇒ ũ∗ ≤ û (see Lemma 1).

On account of (16), (17), (24), (25) we have

−∆û(z) + ξ(z)û(z) = r(z)|∇û(z)|+ f(z, û(z)) for a.a. z ∈ Ω,
∂û

∂n

∣∣∣
∂Ω

= 0,

⇒ û ∈ D+ ⊆ intC+ is a positive solution of problem (1).

Similarly using the solution pair (λ̃∗1, ṽ1) and the second part of hypothesis H(f) (iii)
we produce v̂ ∈ −D+ ⊆ −intC+ a negative solution of (1) such that v̂ ≤ ṽ∗. �

Let S+ (resp. S−) be the set of positive solutions û (resp. of negative solutions v̂) of
problem (1) such that ũ∗ ≤ û (resp. v̂ ≤ ṽ∗). We have seen in Proposition 6 that

∅ 6= S+ ⊆ D+ and ∅ 6= S− ⊆ −D+.

Next we show the existence of extremal constant sign solutions for problem (1) (that
is, the existence of a minimal positive solution and of a maximal negative solution).

Proposition 7. If hypotheses H(ξ), H(r), H(f) hold, then there exist û+ ∈ S+ and
v̂− ∈ S− such that

û+ ≤ û for all û ∈ S+ ⊆ D+,

v̂ ≤ v̂− for all v̂ ∈ S− ⊆ −D+.

Proof. On account of Theorem 1 of Le [11], we have that the solution set S+ is downward
directed (that is, if û1, û2 ∈ S+, then we can find û ∈ S+ such that û ≤ û1, û ≤
û2). Invoking Lemma 3.10, p. 178, of Hu-Papageorgiou [10], we can find a decreasing
sequence {ûn}n≥1 ⊆ S+ such that

inf S+ = inf
n≥1

ûn, ũ∗ ≤ ûn for all n ∈ N.

We have

〈A(ûn), y〉+

∫
Ω

ξ(z)ûnydz =

∫
Ω

r(z)|∇ûn|ydz +

∫
Ω

f(z, ûn)ydz(26)

for all y ∈ H1(Ω), all n ∈ N.

Choosing y = ûn in (26) and since ũ∗ ≤ ûn ≤ û1 ∈ D+ for all n ∈ N, we infer that

{ûn}n≥1 ⊆ H1(Ω) is bounded.

So, we may assume that

(27) ûn
w−→ û+ in H1(Ω) and ûn → û+ in L2(Ω).

In (26) we choose y = ûn − û+, pass to the limit as n → +∞ and use (27) and the
Kadec-Klee property of Hilbert spaces. We obtain

(28) ûn → û+ in H1(Ω).

So, if in (26) we pass to the limit as n→ +∞ and use (28), then we infer that

û+ ∈ S+ ⊆ D+ and û+ ≤ û for all û ∈ S+.
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Similarly, using the fact that S− is upward directed (that is, if v̂1, v̂2 ∈ S−, then we
can find v̂ ∈ S− such that v̂1 ≤ v̂, v̂2 ≤ v̂), we can produce a solution v̂− ∈ S− ⊆ −D+

such that v̂ ≤ v̂− for all v̂ ∈ S−. �

4. Nodal Solutions

In this section, using the extremal constant sign solutions from Proposition 7 and
the flow invariance argument from Papageorgiou-Papalini [17], we will establish the
existence of a nodal (sign-changing) solution. To this end we employ the method of the
frozen variable followed by an iteration process. We need to strengthen the conditions
on the perturbation f(z, x).

H(f)′: f : Ω × R → R is a measurable function such that f(z, 0) = 0 for a.a. z ∈ Ω,
hypotheses H(f)′ (i), (ii), (iii) are the same as the corresponding hypotheses
H(f) (i), (ii), (iii) and
(iv) |f(z, x)−f(z, y)| ≤ k(z)|x−y| for a.a. z ∈ Ω, all x, y ∈ R, with k ∈ L∞(Ω),

‖k‖∞ + ‖r‖∞ < 1 and there exists ξ̂ > 0 such that for a.a. z ∈ Ω, the
function

x→ f(z, x) + ξ̂x

is nondecreasing.

Proposition 8. If hypotheses H(ξ), H(r), H(f)′ hold, then problem (1) admits a nodal
solution ŷ ∈ C1(Ω).

Proof. As we already mentioned we will employ the “frozen variable method”. We freeze
the gradient term. So, let v ∈ C1(Ω) and consider the C1-functional ϕv : H1(Ω) → R
defined by

ϕv(u) =
1

2
γ(u)−

∫
Ω

r(z)|∇v|udz −
∫

Ω

F (z, u)dz for all u ∈ H1(Ω),

where F (z, x) =
∫ x

0
f(z, s)ds. We introduce the following inner product on H1(Ω)

(u, y)∗ =

∫
Ω

(∇u,∇y)RNdz +

∫
Ω

ξ(z)uydz for all u, y ∈ H1(Ω).

By ‖ · ‖∗ we denote the corresponding norm on H1(Ω). On account of Lemma 1 and
hypothesis H(r), we have that ‖ · ‖∗ and ‖ · ‖ are equivalent norms on H1(Ω). The
map u→ A(u) + ξ(z)u belongs in L(H1(Ω), H1(Ω)∗) and it is monotone, coercive (see
Lemma 1), thus it is surjective (see Gasiński-Papageorgiou [7], Corollary 3.2.32, p. 320).
So, we can define

L = (A+ ξ(z)I)−1.

By the Banach Theorem, we have L ∈ L(H1(Ω)∗, H1(Ω)). Let

Ev = L ◦ (r(z)|∇v|I +Nf ).

Evidently Ev : H1(Ω) → H1(Ω) is continuous and standard regularity theory (see
Lieberman [12], Theorem 2) implies that

(29) Ev(H
1(Ω)) ⊆ C1(Ω) and L ∈ L(L2(Ω), C1(Ω)).

Claim 1: Ev(·) is compact and strongly increasing.
The compactness of Ev(·) follows from the Sobolev embedding theorem. Also, let

u, y ∈ H1(Ω), u 6= y, y ≤ u. We set

w = Ev(u) and η = Ev(y).
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We have

∆(η − w)(z) + [ξ(z) + ξ̂](w − η)(z)

= f(z, u(z)) + ξ̂u(z)− (f(z, y(z)) + ξ̂y(z))

≥ 0 for a.a. z ∈ Ω (see hypothesis H(f)′ (iv) and recall that y ≤ u).(30)

Acting on (30) with (η − w)+ ∈ H1(Ω), via Green’s identity, we obtain

γ((η − w)+) + ξ̂ ‖(η − w)+‖2
2 ≤ 0,

⇒ η ≤ w.

From (30) it follows that

∆(w − η)(z) ≤ [‖ξ‖∞ + ξ̂](w − η)(z) for a.a. z ∈ Ω,

⇒ w − η ∈ D+ (by the maximum principle),

⇒ Ev is strongly increasing.

This proves Claim 1.
Let ∇ϕv denote the gradient of ϕv ∈ C1(H1(Ω),R), that is,

(∇ϕv(u), y)H1(Ω) = 〈ϕ′v(u), y〉 for all u, y ∈ H1(Ω).

Claim 2: ∇ϕv = I − Ev.
For u, y ∈ H1(Ω) we have

〈ϕ′v(u), y〉 = 〈A(u), y〉+

∫
Ω

ξ(z)uydz −
∫

Ω

r(z)|∇v|ydz −
∫

Ω

f(z, u)ydz

= (u, y)∗ −
∫

Ω

r(z)|∇v|ydz −
∫

Ω

f(z, u)ydz.(31)

Note that ∫
Ω

[r(z)|∇v|+ f(z, u)]ydz

= 〈L−1(L(r(z)|∇v|+Nf (u))), y〉

=

∫
Ω

(∇Ev(u),∇y)Rdz +

∫
Ω

ξ(z)Ev(u)ydz

= (Ev(u), y)∗.(32)

Returning to (31) and using (32), we obtain

〈ϕ′v(u), y〉 = (u− Ev(u), y)∗ for all y ∈ H1(Ω),

⇒ ∇ϕv = I − Ev.

This proves Claim 2.
We consider the negative gradient flow generated by ϕv, that is, we consider the

following abstract Cauchy problem

(33)
dσ(t, x0)

dt
= −∇ϕv(σ(t, x0)) t ≥ 0, σ(0, x0) = x0.

Note that Ev is Lipschitz continuous, hence so is ∇ϕv (see Claim 2). So, problem
(33) has a unique global flow σ(t, x0), t ≥ 0 (see Gasiński-Papageorgiou [7], Theorem
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5.1.22, p. 618). We have

dσ(t, x0)

dt
+ σ(t, x0) = Ev(σ(t, x0)) t ≥ 0, σ(0, x0) = x0 (see Claim 2),

⇒ σ(t, x0) = e−tx0 +

∫ t

0

e−(t−s)Ev(σ(t, x0))ds for all t ≥ 0.

From (29) and Claim 1, we have

σ(t, C1(Ω)) ⊆ C1(Ω) for all t ≥ 0,

σ(t, x0) ∈ intC+ for all t ≥ 0, all x0 ∈ C+ \ {0}.

We introduce the following two sets

Dv
1 = {x0 ∈ C1(Ω) : there exists t0 > 0 such that σ(t, x0) ∈ int C1(Ω)[v−, u+] for all t ≥ t0},

Dv
2 = {x0 ∈ C1(Ω) : there exists t∗ > 0 such that σ(t, x0) ∈ intC+ for all t ≥ t∗}.

In principle the flow and the above sets depend on the frozen variable v ∈ C1(Ω).
However, if v, v′ ∈ C1(Ω) are close in the C1(Ω)-norm, then so are the flows σv(t, x0) and
σv′(t, x0) in the C1(Ω)-norm uniformly in t > 0. To see this suppose that ‖v−v′‖C1(Ω) <

δ. Then recalling that L(L2(Ω), C1(Ω)), (see (29)), we have

‖σv(t, x0)− σv′(t, x0)‖C1(Ω)

≤
∫ t

0

e−(t−s)‖L‖L‖r‖∞‖v − v′‖C1(Ω)ds

+

∫ t

0

e−(t−s)‖L‖L‖k‖∞‖σv(s, x0)− σv′(s, x0)‖C1(Ω)ds.

Invoking Gronwall’s inequality, we obtain

‖σv(t, x0)− σv′(t, x0)‖C1(Ω) ≤ δ‖L‖2
L‖r‖∞‖k‖∞.

So, from the definition of the sets Dv
1 , Dv

2 we see that we can find δ > 0 small such
that Dv

1 = Dv′
1 and Dv

2 = Dv′
2 if ‖v − v′‖C1(Ω) < δ.

Evidently both sets are open, positively σ-invariant, 0 ∈ D1, 0 ∈ ∂D2, C+\{0} ⊆ D2.
Moreover, the sets ∂D1, ∂D2 are positively σ-invariant (see Claim III in the proof of
Theorem 2 of Papageorgiou-Papalini [17]). In addition Claim IV in that same proof of
[17], says that there exists

(34) ŷv ∈ ∂D1 ∩ ∂D2 ∩Kϕv ⊆ C1(Ω).

Since there is no canonical way to choose this critical point of ϕv we proceed via an
iteration process. So, let v0 ∈ H1(Ω) and vn = ŷvn−1 ∈ C1(Ω) for all n ∈ N. We have

A(vn) + ξ(z)vn = r(z)|∇vn−1|+Nf (vn) in H1(Ω)∗,

A(vn+1) + ξ(z)vn+1 = r(z)|∇vn|+Nf (vn+1) in H1(Ω)∗, n ∈ N.

So, we obtain

〈A(vn − vn+1), vn − vn+1〉+

∫
Ω

ξ(z)(vn − vn+1)2dz

=

∫
Ω

r(z)[|∇vn−1| − |∇vn|](vn − vn+1)dz +

∫
Ω

(f(z, vn)− f(z, vn+1))(vn − vn+1)dz
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⇒ γ(vn − vn+1) ≤ ‖r‖∞
∫

Ω

|∇(vn−1 −∇vn)||vn − vn+1|dz +

∫
Ω

k(z)|vn − vn+1|2dz

(see hypothesis H(f)′ (iv)),

⇒ (1− ‖k‖∞)γ(vn − vn+1) ≤ ‖r‖∞γ(vn−1 − vn)1/2γ(vn − vn+1)1/2,

⇒ γ(vn − vn+1)1/2 ≤ ‖r‖∞
1− ‖k‖∞

γ(vn−1 − vn)1/2 for all n ∈ N,

⇒ {vn}n≥1 ⊆ H1(Ω) is Cauchy (see hypothesis H(f)′ (iv)).

It follows that

vn → ŷ in H1(Ω),

vn → ŷ in C1(Ω) (by regularity theory, see also [8], p. 1464 or [19], p. 578),

⇒ ŷ ∈ ∂D1 ∩ ∂D2 (see (34)),

⇒ ŷ 6= 0 (recall that 0 ∈ D1 and D1 is open).

Also since ŷ ∈ ∂D2, we see that ŷ 6∈ [intC+ ∪ (−intC+)]. Moreover, ŷ is a solution
of (1) and so by the nonlinear strong maximum principle of Pucci-Serrin [22] (pp. 111,
120), ŷ can not have fixed sign or otherwise we should have ŷ ∈ intC+ ∪ (−intC+), a
contradiction. Therefore ŷ ∈ C1(Ω) is nodal. �

So, we can state the following multiplicity theorem for problem (1).

Theorem 2. If hypotheses H(ξ), H(r), H(f)′ hold, then problem (1) has at least three
nontrivial solutions

û ∈ D+, v̂ ∈ −D+ and ŷ ∈ C1(Ω) nodal.

Consider the following parametric problem

(35) −∆u(z) + ξ(z)u(z) = λr(z)|∇u(z)|+ f(z, u(z)) in Ω,
∂u

∂n

∣∣∣
∂Ω

= 0, λ > 0.

In this case we make the following assumptions.

H(r)′: r ∈ L∞(Ω).
H(f)′′: f : Ω × R → R is a measurable function such that f(z, 0) = 0 for a.a. z ∈ Ω,

hypotheses H(f)′′ (i), (ii), (iii) are the same as the corresponding hypotheses
H(f) (i), (ii), (iii) and
(iv) |f(z, x)−f(z, y)| ≤ k(z)|x−y| for a.a. z ∈ Ω, all x, y ∈ R, with k ∈ L∞(Ω),

‖k‖∞ < 1 and there exists ξ̂ > 0 such that for a.a. z ∈ Ω, the function

x→ f(z, x) + ξ̂x

is nondecreasing.

Theorem 3. If hypotheses H(ξ), H(r)′, H(f)′′ hold, then there exists λ∗ > 0 such that
for all λ ∈ (0, λ∗) problem (35) has at least three nontrivial solutions

û ∈ D+, v̂ ∈ −D+ and ŷ ∈ C1(Ω) nodal.

Remark 3. It is an open problem if we can have Theorems 2 and 3 for nonlinear equa-
tions driven by the p-Laplacian. The method of this paper seems to encounter serious
difficulties in the case of p-Laplacian equations.
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