The aim of this note is to exhibit explicit sufficient cohomological criteria ensuring bigness of globally generated, rank-r vector bundles, r⩾ 2 , on smooth, projective varieties of even dimension d⩽ 4. We also discuss connections of our general criteria to some recent results of other authors, as well as applications to tangent bundles of Fano varieties, to suitable Lazarsfeld–Mukai bundles on fourfolds, etcetera.

Bini G., Flamini F. (2020). Big Vector Bundles on Surfaces and Fourfolds. MEDITERRANEAN JOURNAL OF MATHEMATICS, 17(1), 1-20 [10.1007/s00009-019-1463-2].

Big Vector Bundles on Surfaces and Fourfolds

Gilberto Bini
;
2020-01-01

Abstract

The aim of this note is to exhibit explicit sufficient cohomological criteria ensuring bigness of globally generated, rank-r vector bundles, r⩾ 2 , on smooth, projective varieties of even dimension d⩽ 4. We also discuss connections of our general criteria to some recent results of other authors, as well as applications to tangent bundles of Fano varieties, to suitable Lazarsfeld–Mukai bundles on fourfolds, etcetera.
Settore MAT/03 - Geometria
Bini G., Flamini F. (2020). Big Vector Bundles on Surfaces and Fourfolds. MEDITERRANEAN JOURNAL OF MATHEMATICS, 17(1), 1-20 [10.1007/s00009-019-1463-2].
File in questo prodotto:
File Dimensione Formato  
Bini-Flamini2019_Article_BigVectorBundlesOnSurfacesAndF.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 417.59 kB
Formato Adobe PDF
417.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/394800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact