We prove the existence of at least two positive homoclinic solutions for a discrete boundary value problem of equations driven by the (p,q) -Laplace operator. The properties of the nonlinearity ensure that the energy functional, corresponding to the problem, satisfies a mountain pass geometry and a Palais–Smale compactness condition.
Nastasi, A., & Vetro, C. (2019). A note on homoclinic solutions of (p,q)-Laplacian difference equations. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 25(3), 331-341.
Data di pubblicazione: | 2019 |
Titolo: | A note on homoclinic solutions of (p,q)-Laplacian difference equations |
Autori: | |
Citazione: | Nastasi, A., & Vetro, C. (2019). A note on homoclinic solutions of (p,q)-Laplacian difference equations. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 25(3), 331-341. |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1080/10236198.2019.1572128 |
Abstract: | We prove the existence of at least two positive homoclinic solutions for a discrete boundary value problem of equations driven by the (p,q) -Laplace operator. The properties of the nonlinearity ensure that the energy functional, corresponding to the problem, satisfies a mountain pass geometry and a Palais–Smale compactness condition. |
URL: | https://doi.org/10.1080/10236198.2019.1572128 |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2019_JDEA_NastasiVetro.pdf | Articolo principale | Versione Editoriale | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.