We prove the existence of at least two positive homoclinic solutions for a discrete boundary value problem of equations driven by the (p,q) -Laplace operator. The properties of the nonlinearity ensure that the energy functional, corresponding to the problem, satisfies a mountain pass geometry and a Palais–Smale compactness condition.

Nastasi A., & Vetro C. (2019). A note on homoclinic solutions of (p,q)-Laplacian difference equations. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 25(3), 331-341 [10.1080/10236198.2019.1572128].

A note on homoclinic solutions of (p,q)-Laplacian difference equations

Nastasi A.;Vetro C.
2019

Abstract

We prove the existence of at least two positive homoclinic solutions for a discrete boundary value problem of equations driven by the (p,q) -Laplace operator. The properties of the nonlinearity ensure that the energy functional, corresponding to the problem, satisfies a mountain pass geometry and a Palais–Smale compactness condition.
Settore MAT/05 - Analisi Matematica
https://doi.org/10.1080/10236198.2019.1572128
Nastasi A., & Vetro C. (2019). A note on homoclinic solutions of (p,q)-Laplacian difference equations. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 25(3), 331-341 [10.1080/10236198.2019.1572128].
File in questo prodotto:
File Dimensione Formato  
2019_JDEA_NastasiVetro.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 324.48 kB
Formato Adobe PDF
324.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/394488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact