We prove the existence of at least two positive homoclinic solutions for a discrete boundary value problem of equations driven by the (p,q) -Laplace operator. The properties of the nonlinearity ensure that the energy functional, corresponding to the problem, satisfies a mountain pass geometry and a Palais–Smale compactness condition.
Nastasi A., Vetro C. (2019). A note on homoclinic solutions of (p,q)-Laplacian difference equations. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 25(3), 331-341 [10.1080/10236198.2019.1572128].
A note on homoclinic solutions of (p,q)-Laplacian difference equations
Nastasi A.
;Vetro C.
2019-03-01
Abstract
We prove the existence of at least two positive homoclinic solutions for a discrete boundary value problem of equations driven by the (p,q) -Laplace operator. The properties of the nonlinearity ensure that the energy functional, corresponding to the problem, satisfies a mountain pass geometry and a Palais–Smale compactness condition.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2019_JDEA_NastasiVetro.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
324.48 kB
Formato
Adobe PDF
|
324.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10447_394488-pre-print.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
267.86 kB
Formato
Adobe PDF
|
267.86 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.