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Abstract. We prove the existence of at least two positive homoclinic solutions

for a discrete boundary value problem of equations driven by the (p, q)-Laplace
operator. The properties of the nonlinearity ensure that the energy functional,

corresponding to the problem, satisfies a mountain pass geometry and a Palais-

Smale compactness condition.

1. Introduction

Let N be the set of positive integers. We study the discrete boundary value
problem

−∆pu(z − 1)−∆qu(z − 1) + ap(z)φp(u(z)) + aq(z)φq(u(z)) = λg(z, u(z)),

for all z ∈ N (1 < q < p < +∞, λ ∈]0,+∞[),

u(0) = 0, u(z)→ 0 as z → +∞,
(1.1)

where

• φr : R→ R is given as φr(u) = |u|r−2u with u ∈ R,
• ∆u(z − 1) = u(z)− u(z − 1) is the forward difference operator (z ∈ N),
• ∆ru(z−1) := ∆φr(∆u(z−1)) = φr(∆u(z))−φr(∆u(z−1)) is the discrete
r-Laplace operator (z ∈ N),
• ap, aq : N→ R, g : N× R→ R is continuous.

Let G : N× R→ R be given as

G(z, x) =

∫ x

0

g(z, y)dy, for all x ∈ R, z ∈ N.

Here, we impose the following conditions:

(H1) limx→0
|g(z,x)|
|x|q−1 = 0 uniformly for all z ∈ N;

(H2) sup|x|≤ξ |G(·, x)| ∈ l1 for all ξ > 0;

(H3) lim sup|x|→+∞
G(z,x)
|x|p ≤ 0 uniformly for all z ∈ N;

(H4) G(α, β) > 0 for some α ∈ N, β ∈ R;
(H5) ar(z) ∈ [ar0 ,+∞[ for all z ∈ N, ar0 > 0 and ar(z) → +∞ as z → +∞,

r ∈ {p, q}.

Remark 1.1. By (H1) it follows that g(z, 0) = 0 for all z ∈ N.
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A simple function satisfying the above conditions is the following:

gs(z, x) = f(z)|x|s−2x for all x ∈ R, (1.2)

where 1 < q < s < p < +∞, f : Z → R is any l1 function, with f(z) > 0 for all
z ∈ N.

The solution of abstract differential problems, driven by a r-Laplace operator,
was a largely investigated field over the last fifty years. In fact, in connection
with the use of various nonlinearities g, this kind of operator is useful to model
the dynamical behaviour of real phenomena in biological, chemical and physical
applications (see the recent books of Diening-Harjulehto-Hästö-Rŭz̆icka [5] and
Motreanu-Motreanu-Papageorgiou [10]). There is an extensive literature on this
topic, where it can be found a deeper discussion on the methods of the calculus
of variations, critical points and Morse theories. On the other hand, the study of
differential problems involving the sum of a p-Laplace operator and of a q-Laplace
operator (with q < p) is more recent. Here, we recall some interesting contri-
butions due to Marano-Mosconi-Papageorgiou [9], Mugnai-Papageorgiou [13] and
Motreanu-Vetro-Vetro [11, 12]. Precisely, in [9, 13] the authors consider equations,
while in [11, 12] the authors work with systems of equations.

Difference equations give the discrete versions of continuous problems. This
approach is useful in connection with numerical analysis to approximate numeri-
cally the solutions and investigate their stability. We refer to the books of Agar-
wal [1] and Kelly-Peterson [8]. Also, some interesting contributions are given by
Cabada-Iannizzotto-Tersian [2], Iannizzotto-Tersian [6], Jiang-Zhou [7] (for discrete
r-Laplace operator) and Nastasi-Vetro-Vetro [14] (for discrete (p, q)-Laplace oper-
ator).

The multiplicity of solutions and their sign are crucial arguments to investigate,
in respect of the above problems. To this aim variational methods lead to significant
results. Here, we work with the critical points of the energy functional, correspond-
ing to problem (1.1), to get the existence of two positive homoclinic solutions for
discrete (p, q)-Laplacian equations. Precisely, the hypotheses on the nonlinearity g
ensure that the involved energy functional satisfies a mountain pass geometry and
a Palais-Smale compactness condition (see Definition 2.3 and Theorem 2.4 below).

2. Mathematical background

Let us recall some basic definitions. Let X be a Banach space and X∗ its
topological dual. By 〈·, ·〉 we denote the duality brackets for the pair (X∗, X). We
use the Banach space

Xr,h =

{
u : N ∪ {0} → R such that u(0) = 0 and

∑
z∈N

h(z)|u(z)|r < +∞

}
.

Remark 2.1. From the above definition of Xr,h, it follows that u(z) → 0 as z →
+∞ for each u ∈ Xr,h.

Also, we consider the norm

‖u‖r,h :=

(∑
z∈N

h(z)|u(z)|r
)1/r

,
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where h : N → R, with h(z) > 0 for all z ∈ N and h(z) → +∞ as z → +∞,
and 1 < r < +∞. Let lr, l∞ be the sets of all sequences u : N ∪ {0} → R such
that ‖u‖rr :=

∑
z∈N∪{0} |u(z)|r < +∞ and ‖u‖∞ := maxz∈N∪{0} |u(z)| < +∞,

respectively. Thus, (lr, ‖ · ‖r) is a reflexive Banach space, the embedding lr ↪→ l∞

is continuous (‖u‖∞ ≤ ‖u‖r for all u ∈ lr) and lq ⊆ lp with 1 < q < p < +∞,
see Iannizzotto-Tersian [6, Proposition 2], Cabada-Li-Tersian [3] and the references
therein. Also, (Xr,h, ‖ ·‖r,h) is a reflexive Banach space and the embedding Xr,h ↪→
lr is compact, see [6, Proposition 3]. We point out that we can consider N instead
of Z, without affecting validity or applicability of the results in [3, 6].

Now, consider X = Xp,ap ∩Xq,aq and the norm ‖ · ‖ given as

‖u‖ = ‖u‖p,ap + ‖u‖q,aq ,

where ap and aq (see (H5)) are the coefficients of φp and φq in (1.1), respectively.
For all u ∈ X, let Ip, Iq, Ig : X→ R be the functionals given as

Ip(u) =
1

p

[∑
z∈N
|∆u(z − 1)|p + ap(z)|u(z)|p

]
,

Iq(u) =
1

q

[∑
z∈N
|∆u(z − 1)|q + aq(z)|u(z)|q

]
,

Ig(u) =
∑
z∈N

G(z, u(z)).

We have that Ip, Iq, Ig ∈ C1(X,R) (see [6]). Next, for all u, v ∈ X, the following
equalities hold:

〈I ′p(u), v〉 =
∑
z∈N

[φp(∆u(z − 1))∆v(z − 1) + ap(z)φp(u(z))]v(z),

〈I ′q(u), v〉 =
∑
z∈N

[φq(∆u(z − 1))∆v(z − 1) + aq(z)φq(u(z))]v(z),

〈I ′g(u), v〉 =
∑
z∈N

g(z, u(z))v(z).

So, for 1 < r < +∞, we deduce that∑
z∈N

φr(∆u(z − 1))∆v(z − 1)

=
∑
z∈N

[φr(∆u(z − 1))v(z)− φr(∆u(z − 1))v(z − 1)]

=
∑
z∈N

φr(∆u(z − 1))v(z)−
∑
z∈N

φr(∆u(z))v(z)

= −
∑
z∈N

∆φr(∆u(z − 1))v(z).

It follows that

〈I ′p(u), v〉 =
∑
z∈N

[−∆φp(∆u(z − 1)) + ap(z)φp(u(z))]v(z),

〈I ′q(u), v〉 =
∑
z∈N

[−∆φq(∆u(z − 1)) + aq(z)φq(u(z))]v(z),
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for all u, v ∈ X. So, using the previous functionals, we define Jλ : X→ R by

Jλ(u) = Ip(u) + Iq(u)− λIg(u), for all u ∈ X.
Clearly Jλ(0) = 0 and, for all u, v ∈ X, we get

〈J ′λ(u), v〉 =
∑
z∈N

[−∆φp(∆u(z − 1))−∆φq(∆u(z − 1))

+ ap(z)φp(u(z)) + aq(z)φq(u(z))− λg(z, u(z))]v(z).

We conclude that u ∈ X is a solution of problem (1.1) iff u is a critical point of Jλ.
We recall the following notions.

Definition 2.2. By a positive homoclinic solution of problem (1.1) we mean a
solution u ∈ X such that u(z) > 0 for all z ∈ N.

Definition 2.3. Let X be a real Banach space and X∗ its topological dual. Then,
J : X → R satisfies the Palais-Smale condition if any sequence {un} such that

(i) {J(un)} is bounded;
(ii) limn→+∞ ‖J ′(un)‖X∗ = 0,

has a convergent subsequence.

From Pucci-Serrin [16] we have the following mountain pass theorem.

Theorem 2.4. Let X be a reflexive Banach space, J ∈ C1(X) be a functional
satisfying the Palais-Smale condition and suppose that there are ũ ∈ X and positive
real numbers s1, s2 with s1 < s2 ≤ ‖ũ‖ such that

inf
s1≤‖u‖≤s2

J(u) = c ≥ max{J(0), J(ũ)}.

Then the functional J has a critical point û ∈ X with J(û) ≥ c. Moreover, if
J(û) = c then s1 ≤ ‖û‖ ≤ s2.

In the next lemma, we establish some properties of the functional Jλ to show
that it satisfies the hypotheses of Theorem 2.4.

Lemma 2.5. If (H1), (H2), (H3), (H5) hold, then Jλ is coercive and satisfies the
Palais-Smale condition.

Proof. We show that Jλ is coercive, that is

lim
‖u‖→+∞

Jλ(u) = +∞. (2.1)

Fix λ > 0 so that, for all εp ∈]0, ap0(λp)−1[, by (H3) there is ξ > 0 such that

G(z, x) ≤ εp|x|p for all |x| > ξ.

Also let w ∈ l1 be such that

|G(z, x)| ≤ w(z) for all z ∈ N, |x| ≤ ξ (by (H2)).

So, for all u ∈ X, we get

Jλ(u) = Ip(u) + Iq(u)− λIg(u)

≥
‖u‖pp,ap

p
+
‖u‖qq,aq
q

− λ
∑
|u(z)|≤ξ

G(z, u(z))− λ
∑
|u(z)|>ξ

G(z, u(z))

≥
‖u‖pp,ap

p
+
‖u‖qq,aq
q

− λ‖w‖1 − λεp‖u‖pp
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≥
(

1

p
− λ εp

ap0

)
‖u‖pp,ap +

‖u‖qq,aq
q

− λ‖w‖1, (since ap0‖u‖pp ≤ ‖u‖pp,ap)

which tends to +∞ as ‖u‖ → +∞. So Jλ is coercive.
Next, we prove that Jλ satisfies the Palais-Smale condition. To this aim, we need

the following inequalities, that is, there exists mr > 0 such that for all t1, t2 ∈ R
we have

(φr(t1)− φr(t2))(t1 − t2) ≥

mr|t1 − t2|r if r ≥ 2,
mr|t1 − t2|2

(|t1|+ |t2|)2−r if 1 < r < 2.
(2.2)

(see [15, Lemma A.0.5]).
Let {un} ⊆ X be such that {Jλ(un)} is bounded in R and limn→+∞ ‖J ′λ(un)‖X∗ =

0. By (2.1) we deduce that {un} is bounded and by [6, Proposition 3] (i.e., com-
pactness of the embedding X ↪→ lq), we may suppose without any loss of generality
(passing to a subsequence if necessary) that

un ⇀ u in X and un → u in lq, for some u ∈ X.

So, we have

lim
n→+∞

〈J ′λ(u), un − u〉 = 0.

Now, we use (2.2) to get

〈I ′p(un) + I ′q(un)− I ′p(u)− I ′q(u), un − u〉 −
∑
z∈N

[φp(∆un(z − 1))− φp(∆u(z − 1))

+ φq(∆un(z − 1))− φq(∆u(z − 1))](∆un(z − 1)−∆u(z − 1))

=
∑
z∈N

ap(z)[φp(un(z))− φp(u(z))](un(z)− u(z)) (2.3)

+
∑
z∈N

aq(z)[φq(un(z))− φq(u(z))](un(z)− u(z))

≥ mp‖un − u‖pp,ap +mq‖un − u‖qq,aq (by (2.2) if 2 ≤ q < p).

The other cases (p ≥ 2 and 1 < q < 2; 1 < q < p < 2) can be derived in a similar
way, so to avoid repetitions we omit the details. On the other hand, see [6], we
obtain

lim
n→+∞

∑
z∈N

[φr(∆un(z − 1))− φr(∆u(z − 1))](∆un(z − 1)−∆u(z − 1)) = 0,

lim
n→+∞

〈I ′g(un)− I ′g(u), un − u〉 = 0,

lim
n→+∞

〈I ′p(un) + I ′q(un)− I ′p(u)− I ′q(u), un − u〉 = 0.

So, passing to the limit as n→ +∞ in (2.3), we deduce easily that

un → u in Xp,ap and un → u in Xq,aq

It follows that un → u in X = Xp,ap ∩Xq,aq . This concludes the proof. �
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3. Two non-zero homoclinic solutions

In this section we prove the existence of two non-zero solutions for problem (1.1).
Let α ∈ N and β ∈ R be such that G(α, β) > 0 (see (H4)). We put

λ∗ :=
(2 + ap(α))p−1|β|p + (2 + aq(α))q−1|β|q

G(α, β)
.

We establish the following theorem.

Theorem 3.1. If (H1) - (H5) hold, then there exists λ∗ ≥ 0 such that for all λ > λ∗
problem (1.1) has two non-zero solutions ũ, û ∈ X.

Proof. We already pointed out that Jλ(0) = 0. Now, we show that Jλ has zero as
strict local minimizer, for each λ > 0. So, for all εq ∈]0, aq0(λq)−1[, by (H1) there
exists σ > 0 such that

|G(z, x)| ≤ εq|x|q for all z ∈ N, |x| ≤ σ.

From the embeddings X ↪→ lq ↪→ l∞, we can find s > 0 such that ‖u‖∞ < σ for
all u ∈ Bs(0). So, we get

Jλ(u) ≥
‖u‖pp,ap

p
+
‖u‖qq,aq
q

− λεq‖u‖qq

≥
‖u‖pp,ap

p
+

(
1

p
− λεq
aq0

)
‖u‖qq,aq > 0 for all u ∈ Bs(0) \ {0}.

We show that zero is not a global minimizer of Jλ for all λ > λ∗. We put û = βeα
with

eα(z) = δαz for all z ∈ N, δαz =

{
1 if α = z,

0 otherwise.

So, we have

Jλ(û) = (2 + ap(α))p−1|β|p + (2 + aq(α))q−1|β|q − λG(α, β) < 0, for all λ > λ∗.

Next, we choose a negative real number γ with Jλ(û) < γ and set Γ := {u ∈
X : Jλ(u) < γ} 6= ∅ (Γ is bounded since Jλ is coercive). We show that Jλ is
bounded from below on Γ. Assume that there is a sequence {un} ⊆ Γ such that
Jλ(un) → −∞ as n → +∞. Since {un} is bounded and by [6, Propositions 2 and
3] (i.e., continuity of the embedding lq ↪→ l∞ and compactness of the embedding
X ↪→ lq), we may suppose without any loss of generality (passing to a subsequence
if necessary) that

un ⇀ u in X and un → u in lq.

Recall that Jλ = Ip+Iq−λIg, where Ip+Iq is continuous and Ig is weakly lower
semicontinuous (see [6]). So, we have easily

lim inf
n→+∞

Jλ(un) ≥ Jλ(u),

which contradicts the assumption: “Jλ(un)→ −∞ as n→ +∞”. Now, consider a
sequence {un} ⊆ Γ such that

Jλ(un)→ inf
u∈Γ

Jλ(u) = inf
u∈X

Jλ(u) := % as n→ +∞.

By passing to a subsequence if necessary, we conclude easily that

un ⇀ ũ in X and un → ũ in lq for some ũ ∈ X.



A NOTE ON HOMOCLINIC SOLUTIONS 7

So Jλ(ũ) = % < 0 and hence ũ 6= 0. Clearly, ũ is a critical point of Jλ. To get a
second critical point of Jλ, we note that there are positive real numbers s1, s2 with
s1 < s2 ≤ ‖ũ‖ such that

inf
s1≤‖u‖≤s2

Jλ(u) = c ≥ 0 (since zero is a local minimizer).

So, by an application of Theorem 2.4 (see also Lemma 2.5), we deduce that the
functional Jλ has a critical point û ∈ X with Jλ(û) ≥ c (recall Jλ(ũ) = % < 0).
Clearly û 6= ũ and û 6= 0. So, û and ũ are the two non-zero solutions of problem
(1.1).

�

Example 3.2. As we pointed out in the Introduction, the function gs in (1.2)
satisfies conditions (H1) - (H4). So, by an application of Theorem 3.1, the problem

−∆pu(z − 1)−∆qu(z − 1) + ap(z)φp(u(z)) + aq(z)φq(u(z)) = λgs(z, u(z)),

for all z ∈ N, 1 < q < s < p < +∞, λ ∈]0,+∞[,

u(0) = 0, u(z)→ 0 as z → +∞,

has two non-zero solutions for all λ > λ∗, provided that ap and aq satisfy condition
(H5). Here, we have

λ∗ :=
(2 + ap(α))p−1|β|p + (2 + aq(α))q−1|β|q

βs
, β ∈ R such that (H4) holds.

4. Two positive homoclinic solutions

In this section we prove the existence of two positive solutions for problem (1.1).
To do this, we introduce some auxiliary facts (see also [4, 14]).

Let y+ = max{0, y} and denote by g+ : N × R → R the function given as
g+(z, y) = g(z, y+) for all z ∈ N, all y ∈ R.

Now, let Ig+ : X→ R be the functional given as

Ig+(u) =
∑
z∈N

G+(z, u(z)), for all u ∈ X,

where G+ : N× R→ R is defined by

G+(z, x) =

∫ x

0

g+(z, y)dy, for all x ∈ R, z ∈ N.

Clearly, Ig+ ∈ C1(X,R). So, J+
λ : X→ R given as

J+
λ (u) = Ip(u) + Iq(u)− λIg+(u), for all u ∈ X,

has as critical points the solutions of the problem

−∆pu(z − 1)−∆qu(z − 1) + ap(z)φp(u(z)) + aq(z)φq(u(z))

= λg+(z, u(z)), for all z ∈ N,
u(0) = 0, u(z)→ 0 as z → +∞.

(4.1)

Remark 4.1. If g satisfies (H1), then g+ satisfies (H1). If G satisfies (H2) and
(H3), then G+ satisfies (H2) and (H3). In such a case, Lemma 2.5 holds true for
the functional J+

λ .
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Next, let h : N→ [0,+∞[ and r ∈]1,+∞[. We note that{
∆φr(∆u(z − 1))− h(z)φr(u(z)) ≤ 0,

u(z) ≤ 0,

⇒ ∆u(z)

{
≤ 0 if ∆u(z − 1) ≤ 0;

< 0 if ∆u(z − 1) < 0.
(4.2)

By u(z) ≤ 0, we deduce that φr(u(z)) ≤ 0 and so ∆φr(∆u(z − 1)) ≤ 0. It follows
that φr(∆u(z)) ≤ φr(∆u(z − 1)) and so (4.2) is established.

Let

C+ := {u ∈ X : u(z) > 0 for all z ∈ N},
so that u (solution of problem (1.1)) is positive if u ∈ C+. On this basis we develop
a key-result.

Lemma 4.2. Assume that condition (H5) holds and fix u ∈ X such that, for each
z ∈ N, one of the following conditions holds true:

(i) u(z) > 0;
(ii) ∆φp(∆u(z − 1))− ap(z)φp(u(z)) ≤ 0;

(iii) ∆φq(∆u(z − 1))− aq(z)φq(u(z)) ≤ 0.

Then either u ∈ C+ or u ≡ 0.

Proof. Let u ∈ X \ {0} and A = {z ∈ N : u(z) ≤ 0}. Obviously u ∈ C+, whenever
A = ∅. Next, we assume that A 6= ∅ and we lead to contradiction. We distinguish
the cases whether minA = 1 or minA = j ∈ N \ {1}. Indeed, in the first case, we
have u(1) ≤ 0 which implies ∆u(0) ≤ 0. From (4.2) we deduce that ∆u(1) ≤ 0 and
hence u(2) ≤ u(1) ≤ 0. By iterating this procedure, we get

u(z + 1) ≤ u(z) ≤ 0,

for all z ∈ N. Since u(z) ↓ 0 as z → +∞, we have 0 ≤ u(z) ≤ 0 which leads to
contradiction (i.e., u ≡ 0). In the second case (that is minA = j ∈ N \ {1}), we
have ∆u(j − 1) = u(j)− u(j − 1) < 0 (by u(j − 1) > 0). So, using (4.2), we deduce
that

∆u(j) < 0 ⇒ u(j + 1) < u(j) ≤ 0.

Continuing this process, we conclude that

u(z + 1) < u(z) < u(j) ≤ 0,

for all z > j, which leads to a contradiction (i.e., limz→+∞ u(z) < 0). So, A is
empty and hence u ∈ C+. �

Let α ∈ N and β > 0 be such that G+(α, β) > 0. We put

λ+
∗ :=

(2 + ap(α))p−1βp + (2 + aq(α))q−1βq

G+(α, β)
.

Summarizing, we can prove the following multiplicity result for problem (1.1).

Theorem 4.3. If (H1) - (H5) hold with β > 0 in (H4), then there exists λ+
∗ > 0

such that for all λ > λ+
∗ problem (1.1) has two positive solutions ũ, û ∈ C+.
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Proof. By Remark 4.1, Lemma 2.5 holds true for the functional J+
λ , that is, J+

λ

is coercive and satisfies the Palais-Smale condition. So, Theorem 3.1 gives us two
non-zero solutions ũ, û ∈ X of problem (4.1), for all λ > λ+

∗ .
We show that ũ, û ∈ X are positive. So if we have ũ(z) ≤ 0 for some z ∈ N, then

−∆pũ(z − 1)−∆qũ(z − 1) + ap(z)φp(ũ(z)) + aq(z)φq(ũ(z))

= λg(z, ũ+(z)) = λg(z, 0) = 0 (by Remark 1.1), λ > λ+
∗ .

Therefore either (ii) or (iii) of Lemma 4.2 holds for all z ∈ N such that ũ(z) ≤ 0.
So, we obtain ũ ∈ C+, that is, ũ is positive. By reasoning in a similar fashion,
one can deduce that û ∈ C+. So, the two non-zero solutions of problem (4.1) are
positive. Finally, since

g+(z, u(z)) = g(z, u(z)) for all z ∈ N, u ∈ C+,

we point out that each positive solution of problem (4.1) is also a positive solution
of problem (1.1). This concludes the proof. �
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