This paper presents a novel stereo SLAM framework, where a robust loop chain matching scheme for tracking keypoints is combined with an effective frame selection strategy. The proposed approach, referred to as selective SLAM (SSLAM), relies on the observation that the error in the pose estimation propagates from the uncertainty of the three-dimensional points. This is higher for distant points, corresponding to matches with low temporal flow disparity in the images. Comparative results based on the reference KITTI evaluation framework show that SSLAM is effective and can be implemented efficiently, as it does not require any loop closure or bundle adjustment.
Bellavia F., Fanfani M., Pazzaglia F., Colombo C. (2013). Robust selective stereo SLAM without loop closure and bundle adjustment. In A. Petrosino (a cura di), Image Analysis and Processing – ICIAP 2013 (pp. 462-471). Springer [10.1007/978-3-642-41181-6_47].
Robust selective stereo SLAM without loop closure and bundle adjustment
Bellavia F.;
2013-01-01
Abstract
This paper presents a novel stereo SLAM framework, where a robust loop chain matching scheme for tracking keypoints is combined with an effective frame selection strategy. The proposed approach, referred to as selective SLAM (SSLAM), relies on the observation that the error in the pose estimation propagates from the uncertainty of the three-dimensional points. This is higher for distant points, corresponding to matches with low temporal flow disparity in the images. Comparative results based on the reference KITTI evaluation framework show that SSLAM is effective and can be implemented efficiently, as it does not require any loop closure or bundle adjustment.File | Dimensione | Formato | |
---|---|---|---|
ICIAP2013_2.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
719.14 kB
Formato
Adobe PDF
|
719.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.