This paper discusses and compares the best and most recent local descriptors, evaluating them on increasingly complex image matching tasks, encompassing planar and non-planar scenarios under severe viewpoint changes. This evaluation, aimed at assessing descriptor suitability for real-world applications, leverages the concept of approximated overlap error as a means to naturally extend to non-planar scenes the standard metric used for planar scenes. According to the evaluation results, most descriptors exhibit a gradual performance degradation in the transition from planar to non-planar scenes. The best descriptors are those capable of capturing well not only the local image context, but also the global scene structure. Data-driven approaches are shown to have reached the matching robustness and accuracy of the best hand-crafted descriptors
Bellavia F., Colombo C. (2019). An evaluation of recent local image descriptors for real-world applications of image matching. In Proceedings of the 16th International Conference on Machine Vision Applications, MVA 2019 (pp. 1-6). Institute of Electrical and Electronics Engineers Inc. [10.23919/MVA.2019.8757967].
An evaluation of recent local image descriptors for real-world applications of image matching
Bellavia F.;
2019-01-01
Abstract
This paper discusses and compares the best and most recent local descriptors, evaluating them on increasingly complex image matching tasks, encompassing planar and non-planar scenarios under severe viewpoint changes. This evaluation, aimed at assessing descriptor suitability for real-world applications, leverages the concept of approximated overlap error as a means to naturally extend to non-planar scenes the standard metric used for planar scenes. According to the evaluation results, most descriptors exhibit a gradual performance degradation in the transition from planar to non-planar scenes. The best descriptors are those capable of capturing well not only the local image context, but also the global scene structure. Data-driven approaches are shown to have reached the matching robustness and accuracy of the best hand-crafted descriptorsFile | Dimensione | Formato | |
---|---|---|---|
mva_2019.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.