We consider nonlinear multivalued Dirichlet Duffing systems. We do not impose any growth condition on the multivalued perturbation. Using tools from the theory of nonlinear operators of monotone type, we prove existence theorems for the convex and the nonconvex problems. Also we show the existence of extremal trajectories and show that such solutions are $C_0^1(T,IR^N)$-dense in the solution set of the convex problem (strong relaxation theorem)
Papageorgiou N.S., Vetro C., Vetro F. (2019). Nonlinear vector duffing inclusions with no growth restriction on the orientor field. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 54(1), 257-274 [10.12775/TMNA.2019.041].
Nonlinear vector duffing inclusions with no growth restriction on the orientor field
Vetro C.;
2019-01-01
Abstract
We consider nonlinear multivalued Dirichlet Duffing systems. We do not impose any growth condition on the multivalued perturbation. Using tools from the theory of nonlinear operators of monotone type, we prove existence theorems for the convex and the nonconvex problems. Also we show the existence of extremal trajectories and show that such solutions are $C_0^1(T,IR^N)$-dense in the solution set of the convex problem (strong relaxation theorem)File | Dimensione | Formato | |
---|---|---|---|
TMNA_15-2360.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
654.78 kB
Formato
Adobe PDF
|
654.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10447_381898-post-print.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
329.47 kB
Formato
Adobe PDF
|
329.47 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.