We consider nonlinear multivalued Dirichlet Duffing systems. We do not impose any growth condition on the multivalued perturbation. Using tools from the theory of nonlinear operators of monotone type, we prove existence theorems for the convex and the nonconvex problems. Also we show the existence of extremal trajectories and show that such solutions are $C_0^1(T,IR^N)$-dense in the solution set of the convex problem (strong relaxation theorem)

Papageorgiou N.S., Vetro C., Vetro F. (2019). Nonlinear vector duffing inclusions with no growth restriction on the orientor field. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 54(1), 257-274 [10.12775/TMNA.2019.041].

Nonlinear vector duffing inclusions with no growth restriction on the orientor field

Vetro C.;
2019-01-01

Abstract

We consider nonlinear multivalued Dirichlet Duffing systems. We do not impose any growth condition on the multivalued perturbation. Using tools from the theory of nonlinear operators of monotone type, we prove existence theorems for the convex and the nonconvex problems. Also we show the existence of extremal trajectories and show that such solutions are $C_0^1(T,IR^N)$-dense in the solution set of the convex problem (strong relaxation theorem)
Settore MAT/05 - Analisi Matematica
Papageorgiou N.S., Vetro C., Vetro F. (2019). Nonlinear vector duffing inclusions with no growth restriction on the orientor field. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 54(1), 257-274 [10.12775/TMNA.2019.041].
File in questo prodotto:
File Dimensione Formato  
TMNA_15-2360.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 654.78 kB
Formato Adobe PDF
654.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/381898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact