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Abstract. We consider nonlinear multivalued Dirichlet Duffing systems. We do not
impose any growth condition on the multivalued perturbation. Using tools from the
theory of nonlinear operators of monotone type, we prove existence theorems for the
convex and the nonconvex problems. Also we show the existence of extremal trajecto-
ries and show that such solutions are C1

0 (T,RN )-dense in the solution set of the convex
problem (strong relaxation theorem).

1. Introduction

In this paper, we continue our work on multivalued nonlinear Duffing systems initiated
in Papageorgiou-Vetro-Vetro [14]. So, the system under consideration is the following:

(1)

{
−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) ∈ F (t, u(t)) for a.a. t ∈ T = [0, b],

u(0) = u(b) = 0, 1 < p < +∞.

Here a : RN → RN is a monotone homeomorphism and incorporates as special cases
many differential operators of interest. In [14] we proved existence theorems for both
the convex and nonconvex problems (that is, F is convex valued and respectively non-
convex valued). Also, we proved a relaxation theorem showing that the solutions of the
nonconvex problem are C1

0(T,RN)-dense in the solution set of the convex problem. In
[14] the hypotheses on the multivalued perturbation F (t, x) (the orientor field), dictated
a sublinear growth for F (t, ·). In contrast here we do not impose any global growth con-
dition on F (t, ·). Instead, we employ a Hartman-type condition on F (t, ·). As in [14],
we prove existence theorems for the convex and nonconvex problems. We also show
the existence of “extremal solutions”, that is, solutions of (1) when F (t, x) is replaced
by extF (t, x) (= the extreme points of F (t, x)). In the context of control systems such
solutions correspond to states generated by “bang-bang controls”. Finally we prove a
“strong relaxation theorem” showing that the extremal solutions are C1

0(T,RN)-dense
in the solution set of the convex problem. The last two results were mentioned as open
problems in [14].

The presence of the drift term r(·)|u′(·)|p−2u′(·), characterizes problem (1) as non-
variational. So, our method of proof is topological but it is different from the one in
[14]. There, the main tool was fixed point theory. Here our arguments are based on the
theory of nonlinear operators of monotone type.

We mention that the starting point for the work in [14], was the recent paper of
Kalita-Kowalski [10], where the authors studied scalar semilinear Duffing inclusions
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(the convex problem only). Earlier results for single-valued such equations, can be
found in Galewski [2], Kowalski [11], Tomiczek [15].

2. Mathematical Background - Hypotheses

Let X be a reflexive Banach space and X∗ its topological dual. By 〈·, ·〉 we denote
the duality brackets for the pair (X∗, X). A multivalued map A : D ⊆ X → 2X

∗
is said

to be “monotone”, if

〈u∗ − x∗, u− x〉 ≥ 0 for all (u, u∗), (x, x∗) ∈ GrA.

The map A(·) is “strictly monotone”, if it is monotone and

〈u∗ − x∗, u− x〉 = 0 =⇒ u = x.

We say that A(·) is “maximal monotone”, if it is monotone and

〈u∗ − x∗, u− x〉 ≥ 0 for all (u, u∗) ∈ GrA =⇒ (x, x∗) ∈ GrA.

This condition is equivalent to saying that GrA is maximal with respect to inclusion
among the graphs of all monotone maps.

A nonlinear operator K : X → X∗ is said to be of type (S)+, if the following property
holds

un
w−→ u in X and lim sup

n→+∞
〈K(un), un − u〉 ≤ 0 =⇒ un → u in X.

A multivalued map V : X → 2X
∗

is said to be “pseudomonotone”, if

(a) for every x ∈ X, V (x) ⊆ X∗ is nonempty, convex and w-compact;
(b) for any sequences {un}n≥1 ⊆ X, {u∗n}n≥1 ⊆ X∗ such that

un
w−→ u in X , u∗n

w−→ u∗ in X∗, u∗n ∈ V (un) for all n ∈ N,
lim sup
n→+∞

〈u∗n, un − u〉 ≤ 0,

we have u∗ ∈ V (u) and 〈u∗n, un〉 → 〈u∗, u〉.
Pseudomonotone maps exhibit remarkable surjectivity properties. Recall that a mul-

tivalued map V : X → 2X
∗ \ {∅} is said to be “coercive”, if

inf[〈u∗, u〉 : u∗ ∈ V (u)]

‖u‖
→ +∞ as ‖u‖ → +∞.

We have the following surjectivity result for pseudomonotone maps (see Gasiński-
Papageorgiou [3], Theorem 3.2.52, p. 336), see also Francu̇[1].

Theorem 1. If V : X → 2X
∗
is pseudomonotone and coercive, then V (·) is surjective.

Let Y be a separable Banach space. We introduce the following families of subsets of
Y :

Pf(c)(Y ) = {A ⊆ Y : A is nonempty, closed (and convex)},
P(w)k(c)(Y ) = {A ⊆ Y : A is nonempty, (w-) compact (and convex)}.

Let (Ω,Σ) be a measurable space and F : Ω → 2Y \ {∅}. We say that F is “graph
measurable” if GrF = {(ω, y) ∈ Ω × Y : y ∈ F (ω)} ∈ Σ ⊗ B(Y ) with B(Y ) being
the Borel σ-field of Y . Suppose that µ(·) is a finite measure defined on Σ. By the
Yankov-von Neumann-Aumann selection theorem (see Hu-Papageorgiou [8], Theorem
2.14, p. 158), a graph measurable multifunction F : Ω→ 2Y \ {∅} admits a measurable
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selection, that is, there exists a function f : Ω→ Y which is (Σ, B(Y ))-measurable and
f(w) ∈ F (w) µ-a.e. Given a graph measurable multifunction F : Ω → 2Y \ {∅} and
1 ≤ p ≤ +∞ we set

SpF = {f ∈ Lp(Ω, Y ) : f(ω) ∈ F (ω) µ-a.e. on Ω}.
It is easy to check that

SpF 6= ∅ if and only if inf[‖y‖ : y ∈ F (ω)] ≤ ψ(w) µ-a.e., with ψ ∈ Lp(Ω).

The set SpF is “decomposable”, that is,

(A, f1, f2) ∈ Σ× SpF × S
p
F =⇒ χAf1 + χΩ\Af2 ∈ SpF .

Recall that for C ⊆ Ω, χC is the characteristic function of C defined by

χC(ω) =

{
1 if ω ∈ C
0 if ω 6∈ C

.

On Pf (Y ) we can define an extended metric, known as the “Hausdorff metric”, by
setting

h(C,K) = max{max
c∈C

d(c,K),max
k∈K

d(k, C)} for all C,K ∈ Pf (Y ).

We know that (Pf (Y ), h) is a complete metric space. We say that a multifunction
F : Y → Pf (Y ) is “h-continuous”, if it is continuous from Y into (Pf (Y ), h).

Suppose that E,Z are Hausdorff topological spaces and G : E → 2Z \ {∅} a mul-
tifunction. We say that G(·) is “upper semicontinuous (usc)” (resp. “lower semicon-
tinuous (lsc)”), if for all C ⊆ Z closed, G−(C) = {e ∈ E : G(e) ∩ C 6= ∅} (resp.
G+(C) = {e ∈ E : G(e) ⊆ C}) is closed in E.

For any A ⊆ RN , we set |A| = sup[|a| : a ∈ A] (hereafter | · | denotes the Euclidean
norm on RN). Let T = [0, b]. By L1

w(T,RN) we denote the Lebesgue space L1(T,RN)
equipped with the weak norm ‖ · ‖w defined by

‖u‖w = sup

[∣∣∣∣∫ t

s

u(τ)dτ

∣∣∣∣ : 0 ≤ s ≤ t ≤ b

]
, u ∈ L1(T,RN).

Equivalently, we can define the weak norm of u by

‖u‖w = sup

[∣∣∣∣∫ t

0

u(τ)dτ

∣∣∣∣ : 0 ≤ t ≤ b

]
.

On the other hand by Lθ(T,RN)w (1 ≤ θ < +∞), we denote the space Lθ(T,RN)
furnished with the weak topology. The following simple fact can be found in Hu-
Papageorgiou [9], Lemma 2.8, p. 24.

Proposition 1. If {un, u}n≥1 ⊆ Lp(T,RN), 1 < p < +∞, un
‖·‖w−−→ u and supn≥1 ‖un‖p <

+∞, then un
w−→ u in Lp(T,RN).

Consider the following nonlinear vector eigenvalue problem:

−(|u′(t)|p−2u′(t))′ = λ̂|u(t)|p−2u(t) a.e. on T, u(0) = u(b) = 0.

This problem has a smallest eigenvalue λ̂1 > 0, which admits the following variational
characterization

(2) λ̂1 = inf

[‖u′‖pp
‖u‖pp

: u ∈ W 1,p
0 ((0, b),RN), u 6= 0

]
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(see Gasiński-Papageorgiou [3], p. 768).
Now we introduce the hypotheses on the map a : RN → RN and on the drift coefficient

r(·).
H(a): a : RN → RN is continuous, monotone, a(0) = 0 and

a(y) = ĉ(|y|)y for all y ∈ RN ,

with ĉ : (0,+∞)→ (0,+∞) continuous, c0t
p ≤ ĉ(t)t2 for all t > 0, some c0 > 0

and

|a(y)| ≤ c1[1 + |y|p−1] for some c1 > 0, all y ∈ RN .

Remark 1. Evidently a : RN → RN is maximal monotone and

c0|y|p ≤ (a(y), y)RN for all y ∈ RN .

Hypotheses H(a) are more restrictive than those in [14], where no growth restriction
was imposed on a(·). Nevertheless, as the examples which follow illustrate, conditions
H(a) are still very general and incorporate many differential operators of interest.

Example 1. The following maps a : RN → RN satisfy hypotheses H(a):

a(y) = |y|p−2y for all y ∈ RN , 1 < p < +∞
(this map corresponds to the vector p-Laplacian),

a(y) = |y|p−2y + |y|q−2y for all y ∈ RN , 1 < q < p < +∞
(this map corresponds to the vector (p, q)-Laplacian),

a(y) = (1 + |y|2)
p−2
2 y for all y ∈ RN , 1 < p < +∞.

H(r): r ∈ L∞(T ) (T = [0, b]), r(t) ≥ 0 for a.a. t ∈ T and ‖r‖∞ < c0λ̂
1/p.

Finally in what follows by ‖·‖ we denote the norm of the Sobolev spaceW 1,p
0 ((0, b),RN).

On account of the Poincaré inequality, we have

‖u‖ = ‖u′‖p for all u ∈ W 1,p
0 ((0, b),RN).

In what follows to simplify our notation, we write

W 1,p
0 = W 1,p

0 ((0, b),RN).

Also we write

C0(T,RN) = {u ∈ C(T,RN) : u(0) = u(b) = 0}
and

C1
0(T,RN) = C1(T,RN) ∩ C0(T,RN).

Finally if 1 ≤ p < +∞, then 1 < p′ ≤ +∞ is defined by
1

p
+

1

p′
= 1.

3. The Convex Problem

In this section we prove an existence theorem for the convex problem (that is, F is
convex valued). The precise hypotheses on F (t, x) are the following:

H(F )1: F : T × RN → Pkc(RN) is a multifunction such that
(i) for all x ∈ RN , the multifunction t→ F (t, x) admits a measurable selection;
(ii) for a.a. t ∈ T , GrF (t, ·) ⊆ RN × RN is closed;
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(iii) for every η > 0, there exists aη ∈ Lp
′
(T )+ such that

|F (t, x)| ≤ aη(t) for a.a. t ∈ T , all |x| ≤ η

and there exists M > 0 such that

(h, x)RN < 0 for a.a. t ∈ T , all |x| ≥M , all h ∈ F (t, x).

Remark 2. Hypothesis H(F )1(i) is satisfied if for all x ∈ RN the multifunction t →
F (t, x) is graph measurable. Hypotheses H(F )1(ii), (iii) imply that for a.a. t ∈ T ,
F (t, ·) is usc (see Hu-Papageorgiou [8], Proposition 2.23, p. 43). The second part of
hypothesis H(F )1(iii) is a Hartman-type condition on F (t, ·) (see Hartman [6, 7]). In
the context of scalar, single-valued Duffing equations, this hypothesis is in fact a sign
condition saying that F (t, x) < 0 for x ≥ M and F (t, x) > 0 for x ≤ −M . We stress
that no global growth condition is imposed on F (t, ·). This distinguishes our work here
from that in [14].

Consider the nonlinear operator A : W 1,p
0 → W−1,p′ = (W 1,p

0 )∗ defined by

〈A(u), y〉 =

∫ b

0

(a(u′), y′)RNdt for all u, y ∈ W 1,p
0 .

From Gasiński-Papageorgiou [5] (Problem 2.192, p. 279), we have:

Proposition 2. If hypotheses H(a) hold, then A(·) is continuous, monotone (hence
maximal monotone too) and of type (S)+.

Then let V : W 1,p
0 → W−1,p′ be defined by

〈V (u), y〉 = 〈A(u), y〉 −
∫ b

0

r(t)|u′|p−2(u′, y)RNdt for all u, y ∈ W 1,p
0 ,

that is,

(3) V (u) = A(u)− r(·)|u′(·)|p−2u′(·) for all u ∈ W 1,p
0 .

Proposition 3. If hypotheses H(a), H(r) hold, then V : W 1,p
0 → W−1,p′ is pseudomono-

tone and coercive.

Proof. Suppose that

(4) un
w−→ u in W 1,p

0 , V (un)
w−→ u∗ in W−1,p′ , lim sup

n→+∞
〈V (un), un − u〉 ≤ 0.

From (4) and since W 1,p
0 is embedded compactly in C0(T,RN), we have

un → u in C0(T,RN),

⇒
∫ b

0

r(t)|u′n|p−2(u′n, un − u)RNdt→ 0,

⇒ lim sup
n→+∞

〈A(un), un − u〉 ≤ 0 (see (3), (4)),

⇒ un → u in W 1,p
0 (see Proposition 2).(5)

From (5) it follows that
u′n → u′ in Lp(T,RN).

So, by passing to a subsequence if necessary, we may assume that

(6) u′n(t)→ u′(t) for a.a. t ∈ T , |u′n(t)|, |u′(t)| ≤ ξ(t) for a.a. t ∈ T , all n ∈ N,
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with ξ ∈ Lp(T )+. Then from (6) and the dominated convergence theorem, we have∫ b

0

∣∣|u′n|p−2u′n − |u′|p−2u′
∣∣p′ dt→ 0

⇒ r|u′n|p−2u′n → r|u′|p−2u′ in Lp
′
(T,RN) (see H(r)).(7)

On account of (5) and Proposition 2, we have

(8) A(un)→ A(u) in W−1,p′ .

From (7) and (8) it follows that for the original sequence we have

〈V (un), un〉 → 〈V (u), u〉, V (u) = u∗,

⇒ V (·) is pseudomonotone.

Also for all u ∈ W 1,p
0 we have

〈V (u), u〉 =

∫ b

0

(a(u′), u′)RNdt−
∫ b

0

r(t)|u′|p−2(u′, u)RNdt

≥ c0‖u′‖pp − ‖r‖∞‖u′‖p−1
p ‖u‖p

(see hypothesis H(a) and use Hölder’s inequality)

≥

[
c0 −

‖r‖∞
λ̂

1/p
1

]
‖u′‖pp (see (2)),(9)

⇒ V (·) is coercive (see H(r)).

�

Let N : W 1,p
0 → 2L

p′ (T,RN ) be the multifunction defined by

N(u) = Sp
′

F (·,u(·)) for all u ∈ W 1,p
0 .

From [14, Proposition 3], we have:

Proposition 4. If hypotheses H(r), H(F )1 hold, then the multifunction N(·) has values
in Pwkc(L

p′(T,RN)) and it is usc from W 1,p
0 into Lp

′
(T,RN)w.

Recall that W 1,p
0 ↪→ Lp(T,RN) compactly. Hence

Lp
′
(T,RN) ↪→ W−1,p′ compactly

(see Gasiński-Papageorgiou [3], Lemma 2.2.27, p. 141),

⇒ N : W 1,p
0 → Pkc(W

−1,p′) is compact

(that is, N(·) maps bounded sets to relatively compact ones),

⇒ u→ V (u)−N(u) is pseudomonotone(10)

(see Gasiński-Papageorgiou [3], Proposition 3.2.51, p. 334).
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Also for all u ∈ W 1,p
0 and all f ∈ Sp

′

F (·,u(·)) we have

〈V (u), u〉 −
∫ b

0

(f, u)RNdt

≥

[
c0 −

‖r‖∞
λ̂

1/p
1

]
‖u′‖pp −

∫
{|u|≥M}

(f, u)RNdt−
∫
{|u|<M}

(f, u)RNdt (see (9)),

≥

[
c0 −

‖r‖∞
λ̂

1/p
1

]
‖u′‖pp − c2 for some c2 > 0 (see hypothesis H(F )1(iii)),

⇒u→ V (u)−N(u) is coercive.(11)

Theorem 2. If hypotheses H(a), H(r), H(F )1 hold, then problem (1) has a solution
u0 ∈ C1

0(T,RN).

Proof. On account of (10), (11) and Theorem 1, we can find u0 ∈ W 1,p
0 such that

0 ∈ V (u0)−N(u0),

⇒ V (u0) = f for some f ∈ N(u0) = Sp
′

F (·,u0(·)),

⇒ 〈A(u0), y〉 −
∫ b

0

r(t)|u′0|p−2(u′0, y)RNdt =

∫ b

0

(f, y)RNdt for all y ∈ W 1,p
0 ,

⇒ − a(u′0(t))′ − r(t)|u′0(t)|p−2u′0(t) = f(t) for a.a. t ∈ T , u0(0) = u0(b) = 0.(12)

From (12) as in the proof of [14, Proposition 2], we conclude that u0 ∈ C1
0(T,RN). �

Remark 3. An interesting consequence of the above proof, is that if by Ŝc ⊆ C1
0(T,RN)

we denote the solution set of the convex problem, then Ŝc ∈ Pk(C
1
0(T,RN)) (see also

[14]).

4. The Nonconvex Problem

In this section we prove an existence theorem for the nonconvex problem (that is,
F has nonconvex values). The precise hypotheses on the orientor field F (t, x) are the
following:

H(F )2: F : T × RN → Pf (RN) is a multifunction such that
(i) (t, x)→ F (t, x) is graph measurable;

(ii) for a.a. t ∈ T , x→ F (t, x) is lsc;
(iii) the same as hypothesis H(F )1(iii).

Theorem 3. If hypotheses H(a), H(r), H(F )2 hold, then problem (1) has a solution
u0 ∈ C1

0(T,RN).

Proof. Consider the multifunction N : W 1,p
0 → Pf (L

p′(T,RN)) defined by

N(u) = Sp
′

F (·,u(·)) for all u ∈ W 1,p
0 .

According to Theorem 7.27, p. 237, of Hu-Papageorgiou [8], N(·) is lsc and of course
it has decomposable values. So, we can apply Theorem 8.7, p. 245, of Hu-Papageorgiou
[8] and produce a continuous map g : W 1,p

0 → Lp
′
(T,RN) such that

g(u) ∈ N(u) for all u ∈ W 1,p
0 .
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We consider the following nonlinear Duffing system{
−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) = g(u)(t) for a.a. t ∈ T ,
u(0) = u(b) = 0.

Then this problem has a solution u0 ∈ C1
0(T,RN) (see Theorem 2). Evidently u0 ∈

C1
0(T,RN) is a solution of (1). �

5. Extremal Solutions

Let extF (t, x) denote the set of extreme points of F (t, x). In this section we deal
with the following nonlinear multivalued Duffing system:

(13)

{
−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) ∈ extF (t, u(t)) for a.a. t ∈ T ,
u(0) = u(b) = 0.

The solutions of (13) are of course solutions of (1) and are known as “extremal
solutions”.

To produce extremal solutions, first we prove an a priori pointwise bound for the
solutions of (1), using hypothesis H(F )1(iii).

Proposition 5. If hypotheses H(a), H(r), H(F )1(iii) hold and u ∈ C1
0(T,RN) is a

solution of problem (1), then ‖u‖∞ ≤M .

Proof. Let θ(t) =
1

2
|u(t)|2 for all t ∈ T . Suppose that the proposition is not true. Then

θ(t0) = max[θ(t) : t ∈ T ] >
1

2
M2.

Since θ(0) = θ(b) = 0, we see that we may assume that t0 ∈ (0, b). Then we can find
δ > 0 small such that

(14) |u(t)| ≥M and
d

dt
|u(t)|2 ≤ 0 for all t ∈ [t0, t0 + δ] ⊆ T.

We have

−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) = f(t) for a.a. t ∈ T , u(0) = u(b) = 0,

with f ∈ Sp
′

F (·,u(·)).

We take inner product with u(t), integrate over [t0, t] with t ≤ t0 + δ and perform
integration by parts. We obtain

(a(u′(t)), u(t))RN − (a(u′(t0)), u(t0))RN −
∫ t

t0

(a(u′), u′)RNds

+

∫ t

t0

r(s)|u′|p−2(u′, u)RNds =

∫ t

t0

(−f, u)RNds.(15)

Note that

d

dt
θ(t)

∣∣∣
t=t0

= 0,

⇒ 1

2

d

dt
|u(t)|2

∣∣∣
t=t0

= 0,

⇒ (u′(t0), u(t0))RN = 0.
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Therefore we have

(16) (a(u′(t0)), u(t0))RN = ĉ(|u′(t0)|)(u′(t0), u(t0))RN = 0 (see hypothesis H(a)).

Also we have∫ t

t0

r(s)|u′|p−2(u′, u)RNds =
1

2

∫ t

t0

r(s)|u′|p−2 d

ds
|u|2ds ≤ 0(17)

(see hypothesis H(r) and (14)).

Finally on account of (14) and hypothesis H(F )1(iii), we have

(18)

∫ t

t0

(−f, u)RNds > 0.

Returning to (15) and using (16), (17), (18), we obtain

(a(u′(t)), u(t))RN −
∫ t

t0

(a(u′), u′)RNdt > 0,

⇒ (a(u′(t)), u(t))RN > 0 for all t ∈ (t0, t0 + δ] (see hypothesis H(a)),

⇒ ĉ(|u′(t)|)(u′(t), u(t))RN > 0 for all t ∈ (t0, t0 + δ],

⇒ (u′(t), u(t))RN =
1

2

d

dt
|u(t)|2 > 0 for all t ∈ (t0, t0 + δ],

a contradiction (see (14)). Therefore

θ(t0) =
1

2
|u(t0)|2 ≤ 1

2
M2,

⇒ |u(t)| ≤M for all t ∈ T.
�

Let pM : RN → RN be the M -radial retraction defined by

pM(x) =

x if |x| ≤M
Mx

|x|
if M < |x| for all x ∈ RN .

Evidently pM(·) is nonexpansive, that is,

|pM(x)− pM(v)| ≤ |x− v| for all x, v ∈ RN .

On account of Proposition 5, in (13) we may replace F by F0 defined by

F0(t, x) = F (t, pM(x)) for all t ∈ T , all x ∈ RN .

Note that F0(t, x) satisfies the same conditions as F (t, x) and in addition

|F0(t, x)| ≤ aM(t) for a.a. t ∈ T , all x ∈ RN , with aM ∈ Lp
′
(T )+.

Therefore without any loss of generality we may assume that

|F (t, x)| ≤ aM(t) for a.a. t ∈ T , all x ∈ RN .

Let D = {h ∈ Lp′(T,RN) : |h(t)| ≤ aM(t) for a.a. t ∈ T}. We consider the following
Duffing system

(19) −a(u′(t))′ − r(t)|u′(t)|p−2u′(t) = h(t) for a.a. t ∈ T, u(0) = u(b) = 0.

Let C0 = {u ∈ C1
0(T,RN) : u is a solution of (19) with h ∈ D}.

Proposition 6. If hypotheses H(a), H(r) hold, then C0 ⊆ C1
0(T,RN) is compact.
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Proof. Let {un}n≥1 ⊆ C0. We have

(20) −a(u′n)′ − r(t)|u′n|p−2u′n = hn, un(0) = un(b) = 0 for all n ∈ N.

We act with un in (20) and after integration by parts, we obtain

c0‖u′n‖pp − ‖r‖∞‖u′n‖p−1
p ‖un‖p ≤

∫ b

0

(hn, un)RNdt ≤ c3‖u′n‖p for some c3 > 0,

⇒

[
c0 −

‖r‖∞
λ̂

1/p
1

]
‖u′n‖p−1

p ≤ c3 for all n ∈ N,

⇒{un}n≥1 ⊆ W 1,p
0 is bounded (see hypothesis H(r)),

⇒{un}n≥1 ⊆ C0(T,RN) is relatively compact.(21)

From (20) we have

a(u′n(t)) = a(u′n(0))−
∫ t

0

r(s)|u′n|p−2u′nds−
∫ t

0

hnds for all t ∈ T , all n ∈ N,(22)

⇒ u′n(t) = a−1

[
a(u′n(0))−

∫ t

0

[
r(s)|u′n|p−2u′n + hn

]
ds

]
for all t ∈ T , all n ∈ N.(23)

Note that
∫ b

0
u′n(t)dt = 0. So, from (23) and Proposition 3.1(ii) of Manásevich-Mawhin

[12], we have that

(24) {a(u′n(0))}n≥1 ⊆ RN is bounded.

Then from (22), (24) and Arzelà-Ascoli theorem, it follows that

(25) {a(u′n(·))}n≥1 ⊆ C(T,RN) is relatively compact.

Consider the map â−1 : C(T,RN)→ C(T,RN) defined by

â−1(u)(·) = a−1(u(·)) for all u ∈ C(T,RN).

Evidently this map is continuous and bounded (that is, maps bounded sets to bounded
sets). So, from (25) it follows that

(26) {u′n}n≥1 ⊆ C(T,RN) is relatively compact.

From (21) and (26), we have that

{un}n≥1 ⊆ C1
0(T,RN) is relatively compact.

So, we may assume that

un → u in C1
0(T,RN).

Evidently D ⊆ Lp
′
(T,RN) is w-compact and so we may assume that

hn
w−→ h in Lp

′
(T,RN), h ∈ D.

We have∫ b

0

(a(u′n), y′)RNdt−
∫ b

0

r(t)|u′n|p−2(u′n, y)RNdt =

∫ b

0

(hn, y)RNdt

for all y ∈ W 1,p
0 , all n ∈ N.
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Passing to the limit as n→ +∞ and using (24) and (25), we obtain∫ b

0

(a(u′), y′)RNdt−
∫ b

0

r(t)|u′|p−2(u′, y)RNdt =

∫ b

0

(h, y)RNdt

for all y ∈ W 1,p
0 ,

⇒ u ∈ C0.

Therefore C0 ⊆ C1
0(T,RN) is compact. �

Now let C = convC0 ∈ Pkc(C1
0(T,RN)) (see Gasiński-Papageorgiou [4], Theorem 5.86,

p. 852). If by Ŝc we denote the solution set of the convex problem, then Ŝc ⊆ C.
To produce extremal solutions (that is, solutions of (13)), we introduce the following

conditions on the orientor field F (t, x).

H(F )3: F : T × RN → Pkc(RN) is a multifunction such that
(i) for all x ∈ RN , t→ F (t, x) is graph measurable;

(ii) for a.a. t ∈ T , x→ F (t, x) is h-continuous;
(iii) the same as hypothesis H(F )1(iii).

Remark 4. Hypotheses H(F )3(i), (ii) imply that (t, x) → F (t, x) is graph measurable
(see Proposition 7.9, p. 229 of Hu-Papageorgiou [8]). As we already mentioned, by
replacing F with F0 if necessary (see Proposition 5), without any loss of generality we
may assume that

(27) |F (t, x)| ≤ aM(t) for a.a. t ∈ T , all x ∈ RN , with aM ∈ Lp
′
(T )+.

Theorem 4. If hypotheses H(a), H(r), H(F )3 hold, then problem (13) has a solution
u0 ∈ C1

0(T,RN).

Proof. Recall that C = convC0 ∈ Pkc(C1
0(T,RN)) (see Proposition 6). We consider the

multifunction G : C → Pwkc(L
p′(T,RN)) defined by

G(u) = Sp
′

F (·,u(·)) for all u ∈ C.

Using Theorem 8.31, p. 260, of Hu-Papageorgiou [8], we can find a continuous map
g : C → L1

w(T,RN) such that

(28) g(u) ∈ extG(u) = extSp
′

F (·,u(·)) = Sp
′

extF (·,u(·)) for all u ∈ C

(see Hu-Papageorgiou [8], Theorem 4.6, p. 192). On account of (27) and Proposition
1, we have that g : C → Lp

′
(T,RN)w is continuous. We consider the following Duffing

system: {
−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) = g(u)(t) for a.a. t ∈ T,
u(0) = u(b) = 0.

By Theorem 2, this problem has a solution u0 ∈ C1
0(T,RN). Evidently (28) implies

that u0 is an extremal solution (that is, solves problem (13)). �

6. Strong Relaxation Theorem

In this section, under stronger conditions on a(·) and F (·, ·) we prove a strong relax-
ation theorem.
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Recall that if E ⊆ RN is compact, then convE ∈ Pkc(RN) (see Gasiński-Papageorgiou
[4], Problem 5.93, p. 889). We consider the following multivalued Duffing systems:

− a(u′(t))′ − r(t)u(t) ∈ ext convF (t, u(t)) for a.a. t ∈ T , u(0) = u(b) = 0,(29)

− a(u′(t))′ − r(t)u(t) ∈ convF (t, u(t)) for a.a. t ∈ T , u(0) = u(b) = 0.(30)

Let Ŝe ⊆ C1
0(T,RN) be the solution set of (29) and Ŝc ⊆ C1

0(T,RN) the solution set

of (30). We know that Ŝc ∈ Pk(C1
0(T,RN)).

Our aim is to show that

Ŝ
C1

0 (T,RN )

e = Ŝc.

Such a density result is known as “strong relaxation theorem”. It is important in
control theory in connection with the “bang-bang principle”.

To have a strong relaxation theorem, we need stronger conditions on a(·) and F (·, ·).
H(a)′: a : RN → RN is continuous, monotone, a(0) = 0,

a(y) = ĉ(|y|)y for all y ∈ RN ,

with ĉ : (0,+∞)→ (0,+∞) continuous, c0t
2 ≤ ĉ(t)t2 for all t > 0, some c0 > 0,

for every η > 0, there exists c̃η > 0 such that

c̃η|y − v|2 ≤ (a(y)− a(v), y − v)RN for all |y|, |v| ≤ η

and

|a(y)| ≤ c1(1 + |y|) for some c1 > 0, all y ∈ RN .

Remark 5. Evidently a(·) is strictly monotone and maximal monotone. Also a(·) is a
homeomorphism onto RN and |a−1(y)| → +∞ as |y| → +∞.

Example 2. The following maps satisfy hypotheses H(a)′:

a(y) = y for all y ∈ RN ,

a(y) = |y|q−2y + y for all y ∈ RN , with 1 < q < 2,

a(y) =

{
2|y|q−2y if |y| ≤ 1

2y if 1 < |y|
for all y ∈ RN , with 1 < q < 2,

a(y) = (1 + |y|q)
2−q
q |y|q−2y for all y ∈ RN , with 1 < q ≤ 2.

H(F )4: F : T × RN → Pk(RN) is a multifunction such that
(i) for all x ∈ RN , t→ F (t, x) is graph measurable;
(ii) for every η > 0, there exists kη ∈ L1(T )+ such that

c̃η −
‖r‖∞
λ̂

1/p
1

− ‖kη‖∞b > 0,

and

h(convF (t, x), convF (t, v)) ≤ kη(t)|x− v|
for a.a. t ∈ T , all |x|, |v| ≤ η;

(iii) the same as hypothesis H(F )1(iii).
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Remark 6. As before on account of Proposition 5 and by replacing F with F0, without
any loss of generality, we may assume that

(31) |F (t, x)| ≤ aM(t) for a.a. t ∈ T , all x ∈ RN , with aM ∈ Lp
′
(T )+.

Hypotheses H(F )4(i), (ii) imply that (t, x) → F (t, x) is graph measurable and then
so is (t, x)→ convF (t, x). Finally note that

ext convF (t, x) ⊆ F (t, x) for all (t, x) ∈ T × RN .

Theorem 5. If hypotheses H(a)′, H(r), H(F )4 hold, then Ŝ
C1

0 (T,RN )

e = Ŝc.

Proof. As before C = convC0 ∈ Pkc(C1
0(T,RN)) (see Proposition 6). Let u ∈ Ŝc. We

have

−a(u′)′ − r(t)|u′|p−2u′ = f with f ∈ Sp
′

convF (·,u(·)).

For v ∈ C and ε > 0, let Rv
ε : T → 2RN \ {∅} be defined by

Rv
ε(t) = {h ∈ RN : |f(t)− h| < ε+ d(f(t), convF (t, v(t))), h ∈ convF (t, v(t))}.

Clearly Rv
ε(·) is graph measurable. So, we can use the Yankov-von Neumann-Aumann

selection theorem (see Hu-Papageorgiou [8], Theorem 2.14, p. 158) and infer that Rv
ε(·)

admits a measurable selection. Such a selection belongs in Lp
′
(T,RN) (see (31)).

Next let Lε : C → 2L
p′ (T,RN ) be defined by

Lε(v) = Sp
′

Rv
ε

for all v ∈ C.

From the previous argument, we see that Lε(v) 6= ∅ for all v ∈ C. Also v → Lε(v) is

lsc (see Hu-Papageorgiou [8], Lemma 8.3, p. 239). It follows that v → Lε(v) is lsc and
has decomposable values. So, we can find lε : C → Lp

′
(T,RN) continuous such that

lε(v) ∈ Lε(v) for all v ∈ C

(see Hu-Papageorgiou [8], Theorem 8.7, p. 245). Then on account of Theorem 8.31, p.
260, of [8], we can find a continuous map θε : C → Lp

′
w (T,RN) such that

(32) θε(v) ∈ Sp
′

ext convF (·,v(·)), ‖θε(v)− lε(v)‖w < ε for all v ∈ C.

Now let εn → 0+ and set ln = lεn , θn = θεn for all n ∈ N. We consider the following
Duffing system

−a(u′(t))′ − r(t)u′(t) = θn(u)(t) for a.a. t ∈ T, u(0) = u(b) = 0, n ∈ N.

This problem has a solution un ∈ C1
0(T,RN) (see Theorem 2). Note that un ∈ C for

all n ∈ N (see (31)) and C ∈ Pkc(C1
0(T,RN)). So, we may assume that

(33) un → û in C1
0(T,RN).

We have

−a(u′n)′ + a(u′)′ − r(t)[u′n − u′] = θn(un)− f for all n ∈ N.
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We act with un − u and after integration by parts, we have∫ b

0

(a(u′n)− a(u′), u′n − u′)RNdt−
∫ b

0

r(t)(u′n − u′, un − u)RNdt

=

∫ b

0

(θn(un)− f, un − u)RNdt.(34)

Let η = max{supn≥1 ‖un‖C1
0 (T,RN ), ‖u‖C1

0 (T,RN )} < +∞ (see (33)). Hypothesis H(a)′

implies that

(35) c̃η‖u′n − u′‖2
2 ≤

∫ b

0

(a(u′n)− a(u′), u′n − u′)RNdt.

Also, we have∫ b

0

r(t)(u′n − u′, un − u)RNdt ≤ ‖r‖∞‖u′n − u′‖2‖un − u‖2

≤ ‖r‖∞
λ̂

1/2
1

‖u′n − u′‖2
2.(36)

Finally note that∫ b

0

(θn(un)− f, un − u)RNdt

=

∫ b

0

(θn(un)− ln(un), un − u)RNdt+

∫ b

0

(ln(un)− f, un − u)RNdt

≤
∫ b

0

(θn(un)− ln(un), un − u)RNdt+ εnb+

∫ b

0

kη(t)|un − u|2dt for all n ∈ N.(37)

From (32) and Proposition 1, we have

(38)

∫ b

0

(θn(un)− ln(un), un − u)RNdt→ 0 as n→ +∞.

We return to (34), use (35), (36), (37), pass to the limit as n→ +∞ and finally use
(33), (38) and Jensen’s inequality. Then[

c̃η −
‖r‖∞
λ̂

1/2
1

− ‖kη‖∞b

]
‖û′ − u′‖2

2 ≤ 0,

⇒ û = u (see hypothesis H(F )4(ii)).

Since un ∈ Ŝe and un → u in C1
0(T,RN) (see (33)), we conclude that Ŝe

C1
0 (T,RN )

=

Ŝc. �

Remark 7. A careful inspection of the proofs, reveals that the positivity of the drift
coefficient r(·) (see hypothesis H(r)) was first used in the proof of Proposition 5. So,
Theorems 2 and 3 are valid without the assumption that r(t) ≥ 0 for a.a. t ∈ T . It
will be interesting to know if we can remove this restriction also in Theorems 4 and 5.
Theorems 4 and 5 provide answers to questions raised at the end of [14]. Extremal tra-
jectories and a strong relaxation theorem, were proved for a different class of multivalued
second order systems, in Papageorgiou-Vetro-Vetro [13].

We conclude with an example of a control system.
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Example 3. Consider the following control system:

(39)

{
−a(u′(t))′ − r(t)|u′(t)|p−2u′(t) = f(t, u(t))v(t) a.e. on T,

u(0) = u(b) = 0, v(t) ∈ V (t) for a.a. t ∈ T.

In this system, f : T × RN → L(Rm,RN) is a Carathéodory function and V : T →
Pk(Rm) is graph measurable. We assume that

|f(t, x)| ≤ aη(t) for a.a. t ∈ T , all |x| ≤ η with aη ∈ Lp
′
(T ),

|U(t)| ≤ θ for a.a. t ∈ T , some θ > 0,

and there exists M such that

(f(t, x)u, x)RN < 0 for a.a. t ∈ T , all |x| ≥M , all u ∈ U(t).

Then the control system (39) has admissible state-control pairs and if f(t, ·) is locally

Lipschitz with local Lipschitz constant k̂η(·) ∈ L1(T ), then the states of the nonconvex
problem are C1

0(T,RN)-dense in those of the convexified system (control constraint set
convU(t) for all t ∈ T , see Theorem 5).
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