The problem of a particle confined in a box with moving walls is studied, focusing on the case of small perturbations which do not alter the shape of the boundary ('pantography'). The presence of resonant transitions involving the natural transition frequencies of the system and the Fourier transform of the velocity of the walls of the box is brought to the light. The special case of a pantographic change of a circular box is analyzed in depth, also bringing to light the fact that the movement of the boundary cannot affect the angular momentum of the particle

Anza F., Messina A., Militello B. (2019). Resonant Transitions Due to Changing Boundaries. OPEN SYSTEMS & INFORMATION DYNAMICS, 26(2), 1950006-1-1950006-11 [10.1142/S1230161219500069].

Resonant Transitions Due to Changing Boundaries

Anza F.
;
Messina A.;Militello B.
2019-01-01

Abstract

The problem of a particle confined in a box with moving walls is studied, focusing on the case of small perturbations which do not alter the shape of the boundary ('pantography'). The presence of resonant transitions involving the natural transition frequencies of the system and the Fourier transform of the velocity of the walls of the box is brought to the light. The special case of a pantographic change of a circular box is analyzed in depth, also bringing to light the fact that the movement of the boundary cannot affect the angular momentum of the particle
2019
Anza F., Messina A., Militello B. (2019). Resonant Transitions Due to Changing Boundaries. OPEN SYSTEMS & INFORMATION DYNAMICS, 26(2), 1950006-1-1950006-11 [10.1142/S1230161219500069].
File in questo prodotto:
File Dimensione Formato  
AMM (preprint).pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: Pre-print
Dimensione 312.22 kB
Formato Adobe PDF
312.22 kB Adobe PDF Visualizza/Apri
Anza-2019-Resonant-transitions-due-to-changin.pdf

Solo gestori archvio

Descrizione: articolo
Tipologia: Versione Editoriale
Dimensione 138.24 kB
Formato Adobe PDF
138.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/374113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact