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Abstract. The problem of a particle confined in a box with moving walls is studied,
focusing on the case of small perturbations which do not alter the shape of the boundary
(‘pantography’). The presence of resonant transitions involving the natural transition fre-
quencies of the system and the Fourier transform of the velocity of the walls of the box is
brought to the light. The special case of a pantographic change of a circular box is analyzed
in depth, also bringing to light the fact that the movement of the boundary cannot affect
the angular momentum of the particle.

1. Introduction

Resolution of Schrödinger equations with time-dependent Hamiltonian oper-
ators is a challenging task. In fact, exact resolutions are rare and limited to
specific classes of problems [1, 2, 3, 4]. On the contrary, in most of the cases
one can solve the dynamical problem only under special assumptions and
with some approximations, as it happens in the presence of weak interactions
which legitimate the use of a perturbative approach [5, 7, 6], or when specific
commutation relations are satisfied [8, 9, 10]. An important class of time-
dependent hamiltonians is that of slowly changing ones, since they lead to adi-
abatic evolutions [11], with very important applications in quantum system
manipulation spanning from Landau-Zener model [12, 13, 14, 15] and its gen-
eralizations [16, 17, 18, 19, 20] to STIRAP protocols [21, 22, 23, 24, 25, 26, 27]
to the ‘fast counterpart’ of adiabatic evolutions, i.e., the shortcuts to adia-
baticity [28, 29, 30]. Another intriguing class of problems is given by periodic
Hamiltonians, which allow for exploitation of some special recipes based on
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the Floquet theory [31, 32, 33].

In the panorama of systems with time-dependent Hamiltonians, a very
special class is that of systems whose boundary conditions are time-dependent.
Such kind of problems have been widely studied over the last decades in
connection with the Casimir effect [34, 35], but in the past it has also been
considered in connection with quantum mechanical problems, from the Fermi
quantum bouncer [36] to several works analyzing a “free” quantum particle
in a box with moving walls [37, 38, 39, 40]. The interest in such a class of
problems is not only academic, and the relevance of moving boundaries has
been discussed in cavity quantum electrodynamics [41] and in the physical
scenario of trapped particles to propose new strategies for cooling atoms [42].
Recently, the role of the distortion of a trapping bounding potential has been
studied and proved to be a crucial aspect in some chemical processes [43].

Several other works appeared, dealing with specific box shapes [44, 45],
aimed at giving proper mathematical treatment of the Schrödinger prob-
lem in the presence of moving boundaries [46], and exploring the raise of
correlations between different particles confined in the same time-dependent
potential [47]. Very recently, some works reporting on the numerical reso-
lution of the dynamics of a particle confined in a one-dimensional box with
moving walls has appeared [48, 49].

In this paper, we analyze the dynamics of a quantum particle confined
into a box whose walls are moving, and in particular we will focus on the
possibility of exploiting moving boundaries to resonantly stimulate such par-
ticle.

In Ref. [50] we have shown that the problem of a particle confined in
a two-dimensional (or three-dimensional) box with moving boundaries can
be traced back to the problem of a particle with a varying mass, confined
within a static box and subjected to a time-dependent potential. Follow-
ing such an approach, we recast the original problem into the problem of
a particle in a static box governed by a time-dependent effective Hamilto-
nian. It is intuitive and will be proven that if the walls move periodically,
the effective time-dependent Hamiltonian will be periodic too, and with the
same frequency. Through the exploitation of a time-dependent perturbative
approach, we single out the presence of specific resonant transitions which
are immediately traceable back to the analysis of the Fourier transform of
the velocity of the boundary compared with the natural transition frequen-
cies of the physical system. We will focus on two-dimensional problems but
our results are immediately extendable to the three-dimensional case, and of
course are essentially valid also for one-dimensional systems.

The paper is organized as follows. In the next section we introduce the
physical problem, the relevant mathematical formulation and the proper uni-
tary transformation which removes the boundary motion and make it ‘re-
placed’ by a time-dependent term in the Hamiltonian. In the subsequent
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section we introduce the perturbative treatment singling out the presence of
resonances and discussing the role of the Fourier transform of the bound-
ary motion. In section 4. we specialize the previous results to the case of a
two-dimensional circular box. Finally, in section 5. we give some conclusive
remarks.

2. The Physical System and its Hamiltonian

2.1. Two-dimensional box

Let us consider a particle confined in a two-dimensional box whose contour,
expressed in polar coordinates, is given by

r = λ(t)γ(θ) , θ ∈ [0, 2π] , (1)

where λ(t) is a (dimensionless) smooth function of time, and γ(θ) is a smooth
function of the angle θ such that γ(2π) = γ(0) (which guarantees that the
box is not open and the particle is confined). Because of the presence of
λ(t) the dimensions of the box change, but since the dependence of the ra-
dial coordinate of the box on θ and t is factorized as λ(t)γ(θ) the shape of
the box does not change. This is a kind of boundary modification that we
call ‘pantographic’, and that corresponds to the fact that each point of the
boundary moves only along the relevant ‘radial’ direction.

The Hamiltonian describing the particle is simply given by the kinetic
term:

H =
p2

2µ
= − ~2

2µ
∇2 , (2a)

∇2 =

(
1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂2

∂θ2

)
, (2b)

with the time-dependent Dirichlet boundary conditions:

ψ(λ(t)γ(θ), θ) = 0 . (3)

More precisely, the Hamiltonian is given by an operator which coincides,
time by time, with the kinetic term in the domain corresponding to the box,
and zero elsewhere. For the sake of simplicity we will avoid introduction of
such a new symbol.

According to our treatment in [46] and [50], we make a unitary transfor-
mation which essentially maps the original domain delimited by the bound-
ary given by Eq. (1) into another domain with the same shape but different
diameter:

r = γ(θ) , θ ∈ [0, 2π] . (4)
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We call the first domain (the time-dependent one) Dλ and this second one
(the static one) D1. The relevant unitary operator acts as follows:

φ(r, θ) = (Uλψ)(r, θ) = λψ(rλ, θ) . (5)

It maps quantum states defined in Dλ into states defined in D1.
In the new picture, the operator which generates the dynamics of the

particle is given by

Heff = UλHU
†
λ + i~U̇λU †λ

= − ~2

2µλ2
∇2 + i~

λ̇

λ

(
1 + r

∂

∂r

)
, (6)

where one has to take into account the fact that, since λ depends on t, the
unitary operator Uλ depends on time as well. The Hamiltonian in Eq. (6)
describes a particle with varying mass (because of the factor λ−2 in the
kinetic energy) in the presence of a time-dependent ‘potential’ , i.e., the term
i~λ̇/λ(1 + r∂r), which from now on we will call the ‘dilation potential’ or
‘dilation term’.

It is remarkable to note that the dilation potential involves only the ra-
dial coordinate. This is a consequence of the pantographic nature of the box
movement, which implies radial dilation and then only radial motion of the
walls of the box. Of course, this simple fact does not guarantee conserva-
tion of the angular momentum. Indeed, generally speaking, the commutator
between two operators depends on the domain in which the two operators
are acting. Therefore, commutation between the dilation potential and the
angular momentum will depend also on the shape of the box.

It is also worth noting that in the more general case of changes with
deformation (i.e., non pantographic) the effective Hamiltonian in the static
domain turns out to be much more complicated than the one in Eq. (6) (the
complete expression is reported in Ref. [50]).

2.2. One-dimensional and three-dimensional cases

The one-dimensional and three-dimensional counterparts of our problem are
treated in a very similar way. In the one-dimensional case, the domain
is expressed as Dλ = [−λ(t)l/2, λ(t)l/2] and will be mapped into D1 =
[−l/2, l/2], the boundary conditions are ψ(±λ(t)/2) = 0 and will be mapped
into φ(±l/2) = 0, and the generator of the time evolution will change as
follows:

H = − ~2

2µ

∂2

∂x2
=⇒ Heff = − ~2

2µλ2

∂2

∂x2
+ i~

λ̇

λ

(
1

2
+ x

∂

∂x

)
, (7)

where the last differential operator can be put in the form r∂r, with r = |x|.
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In the three-dimensional case, the domain is expressed asDλ = {(r, θ, ϕ)|r ≤
λ(t)γ(θ, ϕ), θ ∈ [0, 2π], ϕ ∈ [0, π]} and will be mapped into D1 obtained for
λ = 1, the boundary conditions are ψ(λ(t)γ(θ, ϕ), θ, ϕ) = 0 ∀θ, ϕ and will be
mapped into φ(γ(θ, ϕ), θ, ϕ) = 0, and the generator of the time evolution will
change as follows:

H = − ~2

2µ
∇2 =⇒ Heff = − ~2

2µλ2
∇2 + i~

λ̇

λ

(
3

2
+ r

∂

∂r

)
. (8)

This clarifies how the further results, which will be explicitly derived for
the two-dimensional case, are essentially valid in 1D and 3D.

3. Pantographic perturbations

Once the problem of one particle in a 2D box with moving walls is transformed
into the problem of a particle in a static box, we get the Hamiltonian in
Eq. (6).

Under the assumption that the dilation parameter λ is a smooth, non-
rapidly varying and close-to-unity function, the quantity λ̇/λ is small and the
dilation potential can be treated as a perturbation. This is in perfect agree-
ment with considerations by Kato on the way to treat small modifications of
the domain in which a particle can move [51]. Such an approach has already
been exploited in Ref. [50] to treat changes of the domain with deformation.
It is appropriate to mention here that in [50] we assume knowledge of the
dynamics in the pantographic case — the relevant Hamiltonian describing
pantographic changes is considered as the unperturbed one — and then treat
the terms coming from deformation as a perturbation. Nevertheless, knowl-
edge of the dynamics in the pantographic case is quite limited, and exact
dynamics is known only for the case of uniformly moving domain. In this
paper, instead, we are attempting to extend our knowledge of the dynamics
in the pantographic case.

In the new picture, here addressed as the ‘Schrödinger picture’, generated
by making the unitary mapping from Dλ to D1, we have a static domain and
a time-dependent Hamiltonian (see Eq. (6)) of the following form:

HS(t) = λ−2H0 + λ̇ λ−1 V . (9)

By performing the passage to the interaction picture through the uni-
tary operator generated by the ‘unperturbed’ Hamiltonian λ−2H0, U0(t) =

e−i~−1
∫ t
0 [λ(s)]−2dsH0 , we obtain the new generator of the time evolution, HI(t) =

λ̇ λ−1 U †0(t)V U0(t).
We now express λ as follows:

λ = 1 + εf(t) , (10)
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where ε is a dimensionless small parameter, f(t) is a smooth, non-rapidly
varying and bounded function, and the operatorsH0 and V are time-independent.
We also introduce the series expansions of λ−2 and λ̇ λ−1:

λ−2 =
∑

k

Ak ε
k = 1− 2εf(t) + ... , (11)

λ̇ λ−1 =
∑

k

Bk ε
k = εḟ(t) + ... , (12)

then getting the following Hamiltonian corrected to the first order in ε:

HS(t) = (1− 2εf(t))H0 + εḟ(t)V . (13)

After performing the relevant spectral decompositions,

H0 =
∑
α

Eα |Eα〉 〈Eα| , (14)

and applying the standard perturbation treatment, we can explicitly write
down the evolved state corrected up to the first order in the parameter ε:

|ψ(t)〉 =

e−
i
~
∫ t
0 [1−2εf(s)]dsH0 + ε e−

i
~H0t

∑
αβ

Vαβ

∫ t

0
ḟ(u) e

i
~ (Eα−Eβ)udu |Eα〉 〈Eβ|

 |ψ(0)〉 ,

(15)
where Vαβ = 〈Eα|V |Eβ〉.

On the basis of Eq. (15) one can immediately argue that the movement
of the walls induces quantum transitions, and two factors determine which
transitions are allowed. On the one hand the coupling through the dilation
potential, which means that the matrix element Vαβ must be nonzero. On
the other hand, in order to have a finite transition probability from the initial
state to another at long time, the following condition must be satisfied:∫ t

0
ḟ(u) e

i
~ (Eα−Eβ)udu 6= 0 , t� ~

|Eα − Eβ|
. (16)

Since the integral in Eq. (16) in the limit t → ∞ essentially approaches
the Fourier transform of ḟ(t) for ω = −(Eα − Eβ)/~, one can assert that
in order to have nonzero transitions between two states the Fourier trans-
form of the radial velocity of the walls should be nonzero for the relevant
frequency. On this basis, it is natural to talk about resonances and turns out
to be important singling out the presence of resonant sinusoidal components
in the perturbation (i.e., the dilation potential). Of course, as usual, non res-
onant components in the Fourier expansion of the perturbation can induce
fluctuations determining small transitions at small time, but such transitions
disappear after a sufficiently long time.
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As a relevant physical situation, one can consider the case where the λ
is a periodic function, and still smooth and close-to-unity. This means that
f(t) is smooth and periodic, and so is ḟ(t), easily leading to the fact that, at
first order, only transitions associated to the frequency of ḟ or its multiples
are allowed.

4. The ‘Breathing’ Circle

In order to better fix the previous ideas we analyze a very special case,
that we call the ‘breathing’ circle. In other words, we consider a particle
moving inside a two-dimensional circular box whose radius is time-dependent:
R(t) = R0(1 + ε sinωt), so that γ(θ) = R0 and f(t) = sinωt. After mapping
the original problem into the problem of a particle confined in a circular box
of radius R0 and expanding the relevant Hamiltonian with respect to ε up to
the first order, one obtains:

Heff = − ~2

2µ
(1− 2ε sinωt)∇2 + ε ω cosωt i~

(
1 + r

∂

∂r

)
. (17)

According to the analysis in Ref. [52], the eigenvalues and eigenfunctions
of a ‘free’ particle (hence governed by H0 = −~2/(2µ)∇2) in a 2D circular
box are given by the following expressions:

Emn =
~2

2µr2
0

a2
mn , (18)

χmn = (2π)−1/2ℵmnJm(kmnr)× eimθ , m ∈ Z , (19)

where Jm(x) is the Bessel function of m-th order, amn is the n-th zero of Jm,
and

k2
mn =

2µEmn
~2

=
(amn)2

r2
0

⇒ kmn =
|amn|
r0

, (20)

ℵmn =

(∫ r0

0
rJm(kmnr)

2dr

)−1/2

. (21)

We have already mentioned the fact that the operator 1 + r∂r does not
involve the angular variable but only the radial one. Moreover, because of the
specific shape of the box, in this case the angular momentum of the system
commutes with such an operator. This fact, considered also the commutation
between kinetic energy and angular momentum, implies that the angular
momentum is conserved through all the evolution. This result is indeed quite
intuitive since the shape of the box is circular at any time and the ‘kicks’
that the particle can receive from the walls of the box are only directed
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along the radius of the circle, hence not producing any ‘torque’. On the
contrary, because of such kicks, the energy of the particle can change, which
corresponds to the possibility of having transitions between states with the
same angular momentum but different energies.

In connection with the perturbation treatment, we can say that the
matrix elements of the dilation potential are vanishing when different val-
ues of the angular momentum quantum number are involved: Vmnm′n′ =
〈χmn|V |χm′n′〉 = δmm′ 〈χmn|V |χmn′〉.

5. Discussion

The analysis developed in previous works, such as Ref. [46] and Ref. [50],
shows that when the problem of a system with moving boundaries is mapped
into a problem with static boundaries the Hamiltonian inducing the evolution
in the new picture becomes time-dependent. Even the very kinetic energy
contains a time-dependent factor, so that the particle appears as a particle
with changing mass. Moreover, a new term - the dilation term, which is
time-dependent as well - is added. Such new term can induce transitions
between the eigenstates of the unperturbed Hamiltonian, which in our case is
simply given by the kinetic energy of a particle with a varying mass. Which
transitions are induced depends on the way the boundary moves, and in
particular from the Fourier transform of the velocity of the walls. As a very
special case, we have considered the case where the walls oscillate at a precise
frequency, so that transitions between eigenstates of the ‘free’ Hamiltonian
can be induced when the boundary oscillations are properly ‘tuned’.

We emphasize the fact that our analysis demonstrates with an appropri-
ate mathematical treatment the intuitive idea that a boundary oscillating at
a given frequency can induce transitions, when such oscillations are tuned
to a transition frequency of the system. Then, in some sense, an oscillating
boundary acts on the system like a suitable oscillating field. By this way,
it is worth mentioning that, because of the choice of considering only pan-
tographic changes of the domain, the dilation potential turns out to be a
radial potential (1 + r∂r) and then, with an appropriate geometrical nature
of the domain, it preserves angular momentum, as it happens in the case of
a circular box.

As a final remark, we point out that if the particle in the original time-
dependent domain is subjected, not only to the potential describing the box
contour, but also to another potential, of course such a term will be kept in
the new picture with a suitable scaling (see Ref. [46]). In our case, for the
sake of simplicity we have not considered such a situation. Nevertheless, in
the presence of such additional potential the approach is essentially the same
as before, just with some mathematical complications. In fact, in the static
domain the particle would be described as a time varying particle subjected
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to a time-dependent potential (resulting as a time-dependent scaling of the
original potential) and to the dilation term (resulting from the change of
picture). Therefore, in the limit of small and smooth movements of the
walls of the box, the last term will be treated as a perturbation to the time
evolution induced by the first two terms.
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