A dynamic dead time controller is presented, specifically intended to operate in synchronous boost converters based on GaN field-effect transistor switches. These transistors have a reduced stored charge with respect to silicon metal-oxide-semiconductor field-effect transistors with similar breakdown voltage and series resistance, and can operate at higher frequencies with reduced switching losses. On the other hand, the voltage drop in reverse conduction is typically more than doubled with respect to silicon devices resulting in relevant power losses during the free-wheeling phases. Therefore, dynamic control of dead time can be profitably applied even in converters operating in the tens of volts range. The device presented in this study controls the switching delays taking into account both variations of the fall/rise times and of the turn-off/on delays, in order to keep dead time within a range of a few nanoseconds above its minimum value. A discrete-component prototype was designed, built in a synchronous boost converter and extensively tested at 1-2MHz switching frequency, in a range of operating parameters corresponding to significant variations of the switching times (currents in the 1-6A range, output voltage up to 50V). The prototype demonstrated the capability to match dead time to actual operating conditions with a smooth and fast transient response.
Schirone, L., Macellari, M., Pellitteri, F. (2017). Predictive dead time controller for GaN-based boost converters. IET POWER ELECTRONICS, 10(4), 421-428 [10.1049/iet-pel.2015.0551].
Predictive dead time controller for GaN-based boost converters
Filippo PellitteriMembro del Collaboration Group
2017-01-01
Abstract
A dynamic dead time controller is presented, specifically intended to operate in synchronous boost converters based on GaN field-effect transistor switches. These transistors have a reduced stored charge with respect to silicon metal-oxide-semiconductor field-effect transistors with similar breakdown voltage and series resistance, and can operate at higher frequencies with reduced switching losses. On the other hand, the voltage drop in reverse conduction is typically more than doubled with respect to silicon devices resulting in relevant power losses during the free-wheeling phases. Therefore, dynamic control of dead time can be profitably applied even in converters operating in the tens of volts range. The device presented in this study controls the switching delays taking into account both variations of the fall/rise times and of the turn-off/on delays, in order to keep dead time within a range of a few nanoseconds above its minimum value. A discrete-component prototype was designed, built in a synchronous boost converter and extensively tested at 1-2MHz switching frequency, in a range of operating parameters corresponding to significant variations of the switching times (currents in the 1-6A range, output voltage up to 50V). The prototype demonstrated the capability to match dead time to actual operating conditions with a smooth and fast transient response.File | Dimensione | Formato | |
---|---|---|---|
Pellitteri 2017 IET predictive dead time.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
3.25 MB
Formato
Adobe PDF
|
3.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Filippo Pellitteri.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.