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ABSTRACT 

A dynamic dead time controller is presented, specifically intended to operate in synchronous boost converters based on 

GaN FET switches. These transistors have a reduced stored charge with respect to silicon MOSFETs with similar 

breakdown voltage and series resistance, and can operate at higher frequencies with reduced switching losses. On the 

other hand, the voltage drop in reverse conduction is typically more than doubled with respect to silicon devices 

resulting in relevant power losses during the free-wheeling phases. Therefore dynamic control of dead time can be 

profitably applied even in converters operating in the tens of volts range. The device presented in this paper controls the 

switching delays taking into account both variations of the fall/rise times and of the turn-off/on delays, in order to keep 

dead time within a range of a few nanoseconds above its minimum value. A discrete-components prototype was 

designed, built in a synchronous boost converter and extensively tested at 1-2 MHz switching frequency, in a range of 

operating parameters corresponding to significant variations of the switching times (currents in the 1-6A range, output 

voltage up to 50V). The prototype demonstrated the capability to match dead time to actual operating conditions with a 

smooth and fast transient response. 
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1. INTRODUCTION 

The efforts to increase power density of switching converters are stimulating a wide interest in GaN based FET devices, 

as they are expected to enable relevant increases of operational frequencies [1] or/and efficiencies [2], [3], [4] with 

respect to state-of-the-art silicon MOSFETs. In fact they provide large reductions of the switching times [5], due to 

peculiar GaN properties allowing to reduce die size, and consequently capacitance, with respect to silicon devices with 

similar breakdown voltage [6]. 

GaN transistors for low voltage applications, like the eGaN FET
(TM)

 manufactured by EPC, can be grown on Silicon 

substrates. Their operation is quite similar to lateral MOSFETs, but reverse conduction in the OFF state relies on a low-

conductivity channel [7], where voltage drop can largely exceed the typical forward voltage of body diodes. This effect 

can be particularly harmful in synchronous converters and in bridge legs where the switches go in reverse conduction at 

any switching cycle, during the excess dead time. Actually the analysis of the switching sequence reported in Sec. II 

distinguishes between the dead time, when no transistor is in direct conduction, and the excess dead time, when one of 

the transistors is biased in reverse conduction. 

As both turn-off and turn-on processes are affected by current level, voltage, temperature and parametric variations, in 

the absence of dynamic control the delay between turn-off and turn-on commands has to be conservatively set to the 

maximum required in any operating conditions [8], resulting in a superfluous excess dead time in any other condition. 

This approach is not suitable for high-frequency GaN based converters, because the excess dead time may be a relevant 

part of the conduction period and the voltage pulses arising during reverse conduction may result in large power losses 

and EMIs. Basically such voltage peaks could be clamped by external Schottky diodes, but in this case the additional 

capacity and parasitic inductance of the related interconnections would easily impair the improvements in transient 

behaviour provided by GaN technology. 

The effects of dead time have been investigated with reference to several applications. Specific techniques for its 

management have been proposed for full bridges [9], bridge legs [10], buck converters [11], shunt power filters [12], 

PWM amplifiers [13], [14].  

In three-phase PWM inverter-fed induction motor systems the dead time tends to distort current waveforms and to cause 

torque ripples [15], [16]. This circumstance is especially relevant in case of high frequency ratio between PWM and the 

reference wave because the small distortions generated during each switching event tend to cumulate over a half period 

[17], [18]. The approaches proposed to mitigate the related effects were mostly intended to modify the reference signal 

either a priori [19] or on-the-line by detecting voltage zero crossing [20], [21]. Effectiveness and complexity of the 

proposed techniques have been evolving in parallel with performance of digital systems [11], [22-24]. 



In dc-dc converters different effects are observed. In buck converters during dead time the switching node voltage is 

driven negative by the voltage drop on a switch in reverse conduction. In low-voltage converters the negative peak can 

be a relevant fraction of the output voltage, and could even induce current reversal in case of Discontinuous Current 

Mode operation [25]. Differently, in boost converters during reverse conduction the switching node voltage tends to 

exceed the output voltage. The excess dead time may affect operation of the stage mainly via the duration of the phase 

of energy transfer to the load, which is linked to the maximum voltage gain. On the other hand, to our knowledge at 

present no results have been published on dynamic dead time control in boost converters: just in [26] a thorough 

theoretical analysis was presented, but the problem of dynamically adjusting dead time on the basis of variable 

operating conditions was not faced. Otherwise, several approaches were proposed for dynamic control of dead time 

duration in buck converters, aimed to keep it at the minimum value needed to avoid shoot-through in the specific 

operating conditions. 

Adaptive control of dead time adjusts its duration by generating the turn-on command as soon as complete current 

quenching in the driven-off transistor is detected. Originally proposed in [27], it was incorporated in a commercial 

device in 1998 [28]. This approach, even in its most recent variants [29], [30] is not suitable for converters operating at 

switching frequencies larger than few tens of kHz, as the minimum dead time is clamped by the delay introduced by 

gate drivers and voltage comparators [31].  

Predictive control [32] overcomes this limitation by setting the delay between gate commands on the basis of the dead 

time observed in the last switching event. Digital predictive techniques can provide either high accuracy or fast 

response in adjusting dead time duration. In fact, predictive unit-bit-delay adjustment techniques [33] increase the delay 

by small steps at each switching cycle. They achieve high resolution by relatively simple digital circuits, but are 

affected by poor transient response. Otherwise, one-step-delay predictive adjustment techniques [34] can update dead 

time in a single cycle: they are capable to track fast-changing loads, but are affected by rough digital delay quantisation. 

The issue of delay quantisation in digital control of dead time and its trade-off with circuit complexity and power 

absorption has been faced in different ways. The baseline is a binary scheme where the delay is selected between two 

values on the basis of the operating conditions. Resolution is improved in [35] by a DSP-based system, where the delay 

is selected in a Look Up Table (LUT). Further improvements were achieved in [36] where the delay provided by a LUT 

was used as a first-guess to be successively refined. A remarkable amount of computational load was required for the 

optimisation algorithm in charge of estimating efficiency from voltage/current measurements and searching its 

maximum according to a kind of Perturb & Observe algorithm. Otherwise, the sensorless approach proposed in [33] 

finds the optimal dead time by searching for the maximum efficiency in buck converters on the basis of duty cycle 



minimization. The main limitation of this approach is the assumption that the converter operates in stationary 

conditions, necessary to establish the link between duty cycle and efficiency.  

Analog predictive techniques were reported by several authors. Some of them set the dead time on the basis of a 

predetermined relation between the turn-on delay and the current measured either on the load [37] or in a switch [38]. 

These approaches neglect the effects of voltage and temperature on the switching times and are affected by parametric 

variations. Better accuracy was achieved by controlling the time elapsing between the gate turn-off command and the 

zero crossing of the drain-source voltage on the driven-on transistor [25], [39], [40]. This approach is affected by 

variations of the turn-off delay so that the resulting accuracy of the controlled excess dead time hardly can be better 

than a few tens of nanoseconds. 

On the other hand, efficient operation in the multi-MHz switching frequency range in the presence of wide load and/or 

voltage variations requires that dead time is controlled in the nanoseconds range, especially in boost converters. This 

could be achieved by the proposed device, allowing direct control of the duration of the excess dead time based on 

detection of the reverse bias of the power switches. This approach, together with predictive control, allowed us to 

achieve in the same controller both a precision in the nanoseconds range, comparable with that provided by the most 

precise competitors, and a dynamical response in the tens of microseconds range with reduced circuit complexity. 

Moreover, the proposed device is, to our knowledge, the first dynamical dead time controller experimentally tested in 

operation with boost converters.  

The principles of operation are introduced in Sec. II. A prototype was specifically designed for GaN-based boost 

converters, demonstrating correct operation and a quite fast and smooth transient response. An analysis of the 

experimental results is reported in Sec. III. 

 

2. THE PROPOSED SYSTEM 

The proposed dead time controller is intended to be embedded in the control loop of a synchronous boost converter, 

according to the schematic outlined in Fig. 1. It receives the complementary signals UG1 and UG2 , setting the duty cycle 

of the synchronous transistors M1 and M2, respectively, from an independent duty cycle generator fitted to implement 

the desired control law for the converter. Correspondingly, the dead time controller generates the pair of non-

overlapping gate commands VG1 and VG2 to be applied to M1 and M2. 

 



 

Figure 1. 

Outline of the system. 

 

Specifically, as illustrated in Fig. 2, the controller modulates the delay td between the turn-off and turn-on gate 

commands so that a finite dead time   with no transistor in direct conduction is provided in the switching sequence, 

regardless of variations of turn-on (tON ) and turn-off (tOFF) times: 

 OFFONd ttt   (1) 

  

 

Figure  2.  

Timing diagrams and definitions for dead time generation. ID1, ID2 are the currents in M1 and M2, respectively. VP is the 

output of the pulse detector, as detailed in Fig. 3. 



 

Fig. 2 outlines the waveforms related to both transitions in boost converters. The dead time starts when current actually 

quenches in the commanded-OFF switch. From then on, the inductor current IL charges the switching-node capacitance 

CX until its voltage VX exceeds the output voltage VOUT.  

When   is long enough, M1 goes in reverse conduction, and VX saturates at a level dependent on the operating 

conditions and on the transistor in use: in case of GaN FET switches the voltage peak   OUTMAXXM VVV   can 

reach several volts. 

Otherwise, if the synchronous switch is turned on before reverse conduction starts in M1, VX exceeds VOUT for just a 

short time tp. In this case the peak amplitude VM can be expressed as: 
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where IL is the ripple current in IL. The overvoltage duration tp can be expressed as: 
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where tVr is the time needed for voltage to reach VOUT and V is either VOUT in the transient following M2 switch-off or 

zero after M1 switch-off. The drop time t3 , as defined in Fig. 2, is typically short and barely affected by the operating 

conditions.  

According to (1) and (3), any variation of td directly reflects in a similar variation of  and tp, so that for the sake of 

small-signal analysis it is possible to assume: 
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The control action of the proposed system consists in modulating td to compensate for the variations of tp with the 

operating conditions. 

The dead time controller can be split in two stages: a dead time sensor, providing a precise measurement of the 

overvoltage duration tp , and an adjustable delay generator, intended to accordingly modulate the delay td to be applied 

during the next switching cycle.  

In order to make operation of the dead time controller independent of the output voltage, the circuit is fed by a power 

supply floating below the output positive line and is interfaced to the converter controller and to the transistor gate 

drivers by means of suitable optocouplers.  



2.1. DEAD TIME SENSOR 

A schematic of the Dead Time Sensor is reported in Fig. 3. 

 

 

Figure 3.  

Schematic of the Dead Time Sensor. 

 

The input stage is a high speed comparator Q1 set for emitting a negative voltage pulse on VP in response to the voltage 

peak developed on VX. Correspondingly, a charge proportional to the pulse duration tp is removed from the capacitor C1 

via R1 and D1. The charge QC1 on C1 is then restored by a constant current IDC , providing a reference charge QRIF= IDC 

TSW during every switching period TSW. As a result, at the beginning of the k+1 switching period the stored charge on C1 

is: 
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where VLOW is the negative output level of the comparator Q1 and V is the forward voltage of D1. 

In stationary conditions both QC1 and tpj have constant values:     101111 CkCkC VCQQ 
 and tpj = tp0 . They are linked 

by the balance of positive and negative charges: 
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In proximity of a determined operating point tp0 the small-signal transfer characteristic can be linearised as: 

 pRCC tVV  101  (7) 
   

where R is dependent on the operating point tp0: 
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Example 1 

When fSW = 1 MHz, Idc = 2.8 A and R1 = 280 , if a small-signal Schottky diode is used with V = 0.2V, the stationary 

value of VC1 corresponding to tp = 2.5ns is VC10 = 2V. In the same conditions the slope of the transfer characteristic is 

R = 0.2 V/ns. 

 

2.2. ADJUSTABLE DELAY GENERATOR 

The Adjustable Delay Generator is outlined in Fig. 4: it is basically a delay cell propagating the pulses received from 

the duty cycle generator UG2 to the MOSFET gates with a delay td in the rising edge. Two optocouplers are needed in 

order to allow the ground of the dead time controller to float with the output voltage of the converter.  

The time constant tC for charging the capacitor C2 is modulated on the basis of the input voltage VC1: 

   1332 CdsC VrRCt   (9) 
   

where rds3 (VC1) is the series resistance of M3. Specifically, the series resistance of M3, polarised in triode, is controlled 

by the amplifier Q2, having a gain (-G2). An high output impedance is needed for this amplifier, in order to avoid 

appreciable discharging of the Gate-Source capacitance of M3 during td. The transfer characteristic td Vs. VC1 can be 

linearised in proximity of the operating point to derive the gain 
1C

d
F

Vd

td
  as: 
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Figure 4.  

Schematic of the Adjustable Delay Generator. 

 

The small-signal analysis provides: 
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Where Vth is the switching threshold of the comparator Q3 and VH is the positive level of the 2GU  signal. The derivative 

gs

ds

Vd

rd
depends on the transistor in use and on its operating point.  

Example 2 

When VC1 is 2 V and G2 = 6, the MOSFET M3 is biased at a point where d rds / d Vgs = 0.45 /mV. In an adjustable 

delay generator with C2 = 100 pF and VH = 5V, setting the threshold of Q3 to Vth = 3.7 V provides F = 200 ns/V. 

2.3. THE CONTROL SYSTEM 

According to the predictive approach, a closed loop system adjusts td on the basis of the pulse duration tp detected in the 

previous switching events. Fig. 5 outlines the relevant waveforms in response to a sudden variation of the switching 

times caused by a current increase. Such variation results in a sudden rise of the excess dead time, which is detected by 

the comparator Q1 making tp pass from tpA to tpB. The resulting longer discharge of C1 , amplified by Q2 , increases the 

gate bias on the transistor M3 . Thus, in the following switching events the charging rate of capacitor C2 will be 

increased, bringing to a shorter delay td . The negative feedback action drives back the excess dead time towards its 

starting value in a few switching cycles, depending on the controller parameters. 

 

Figure 5.  

Response to a variation of the switching times induced by a sudden load variation. 

 



 

 

Figure 6.  

The control loop. 

 

The closed loop behaviour can be represented by the block diagram reported in Fig. 6.

Loop analysis was carried out on the basis of small-signal perturbation of nonlinear variables: 
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Thus, taking into account (4), (10), (11), the overall loop gain T(z) can be derived as: 
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The system behaves as a simple PI controller, where integration is intrinsic in storing information about tp along 

successive switching events. As T(z) contains a single pole, it provides sufficient phase margin for smooth transient 

behaviour. 

3. EXPERIMENTAL VERIFICATION 

In order to demonstrate correct operation of the proposed dead time controller a prototype was built and tested. It was 

embedded in the control loop of a synchronous boost converter, with switching frequency in the MHz range, voltage 

gain 2× and output voltage up to VOUT = 50V. The switches were EPC2001 eGaN FETs, with 100V drain-to-source 

breakdown voltage, 25A maximum continuous drain current and 8nC total gate charge. The gate drivers were LM5114 

devices manufactured by Texas Instruments. The dead time controller was fed by a 5V power supply floating below the 

positive line of the converter output and had a power absorption lower than 150 mW. It was interfaced to the duty cycle 

control circuit and to the gate drivers by means of IL710 high-speed digital isolators. As a result of the predictive 

approach, sub-nanosecond response time was only required for the input comparator Q1, and the ADCMP553 was 



selected. The prototype also included HSMS2820 diodes, NX3020NAKT MOS transistors as amplifiers, and a 

LMV7219 as the output comparator Q3. 

Fig. 7(a) reports the experimental transfer characteristics of the Dead Time Sensor stage for different values of the 

parameter IDC defined in Fig. 3. It is shown that the slope of the curves VC1 Vs. tp tends to decrease at high tp , with a 

trend loosely reproducing the theoretically predicted 1/tp law. The deviation may be ascribed to some simplifying 

assumptions adopted to derive eq. (8). In fact a precise analysis would take into account the complete impedances of all 

components involved in the fast charge exchanges with C1 . At the operating point tp0  2ns, using IDC = 2.8 A and 

C1.> 50 pF, the observed slope was nsV
dt

dV
R

p

C 2.01   . The value of IDC was set by means of a current mirror 

configuration, capable to minimise its fluctuations with temperature and parametric variations to less than 5% in the 

worst case. On the basis of the experimental results reported in Fig. 7(a), such modifications entail an uncertainty lower 

than 2ns about the reference value of tp . 

 

  

(a) (b) 

Figure 7.  

Transfer characteristics of: (a) dead time sensor for different values of IDC  (b) adjustable delay generator as a function 

of the gain G2 . 

 

Fig. 7(b) shows the transfer characteristics of the adjustable delay generator for different values of the gain G2 . It can be 

observed that, despite severe nonlinearities in operation of single subcircuits in the stage, the transfer characteristic 

td Vs.  VC1 has a quite smooth trend.  

When G2 is increased attempting to improve precision of the control loop, the range of linear operation is reduced. 

Thus, the trade-off between precision and range of linear operation was heuristically investigated, obtaining a 

satisfactory performance for G2 = 6. This value provided a slope Vns
dV

dt
F

C

d 200
1

   at an operating point VC1 =1.95 



V. Not shown in the figure, an additional delay offset has been introduced in order to align the high-gain region with the 

desired operating point. 

Controller operation is analysed on the basis of the waveforms shown in Fig. 8, referred to the switching transition 

occurring after the M2 turn OFF. The figure reports a mosaic of the typical waveforms of the switching node voltage VX 

observed on a converter with a fixed delay set at 30 ns (Fig. 8(a) and 8(b)) and with a dynamically controlled dead time 

(Fig. 8(c)), for input currents ranging from IL=1 A to IL=5 A. The edge of the turn-off command 2GU  is also reported 

for reference. 

. 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 8.  

Waveforms for input currents varying from 1 A to 5 A: (a) VX with fixed turn-on delay td (10V/div); (b) the same as (a) 

with 1V/div vertical scale; (c) VX and VP with controlled td (1V/div). The reference voltage for the traces in (b) and (c) 

was the output voltage, VOUT = 50V. 

 

Fig. 8(a) illustrates the link among IL and tOFF  via the slew rate of VX  in the presence of a fixed delay. In this condition 

the duration of the reverse conduction of M1 can vary by several tens of nanoseconds, as better appreciated in an 



expanded scale in Fig. 8(b). It is possible to observe that, after an inceptive voltage peak, VX stabilises nearly 2V above 

VOUT , due to reverse conduction of M1 . Then, when M1 itself starts to conduct direct current, VX is short-circuited to the 

output node via the series resistance Rds(ON). It can be noted that both amplitude and duration of the inceptive voltage 

peak are dependent on IL . Otherwise, when the dead time is controlled by the proposed device, M1 never enters in 

reverse conduction (Fig. 8(c) ). Actually VX just undergoes a short voltage peak, with reduced amplitude and stable 

duration in the few nanoseconds range. Position of the peak is shifted with the load, according to the modulation of td 

applied in response to variations of the transistors switching times 

Fig. 8(c) also reports the voltage pulses VP emitted by the comparator Q1, showing that the controller succeeded in 

keeping the peak duration nearly unvaried at tp < 4ns. 

A similar behaviour could be observed during the switching transition after the M1 turn OFF [41]. The main difference, 

as outlined in Fig. 2, arises from the amplitude of the voltage to be swept during switch turn-off and the related 

variations of the delay times to be introduced. 

The transient behaviour of the developed system is shown in Fig. 9, reporting the delay td and the pulse duration tp along 

a load transient with IL increasing from 1A to 5A in nearly 500s. It can be observed that the system promptly reacts to 

the load variation, reducing td until a new stationary condition is reached. The observed tp changed from 1.7ns to 3.2ns 

with a small overshoot, remaining always smaller than 5ns. The experimental tests reveal that, corresponding to the 

considered transient, the dead time variations follow the converter current with delays barely appreciable in the scale of 

hundreds of microseconds. 

 

 

Figure 9.  

Delay td and pulse duration tp during a load transient forcing the inductor current IL to rise from 1A to 5A in nearly 500s. 

 

A similar behaviour is observed when the variations of switching times are induced by voltage modifications. 



The switching losses can be appreciably reduced by the proposed device, as demonstrated by Fig. 10, where the 

conversion efficiencies achieved with dynamically controlled and fixed dead time are reported in comparison. The data 

were obtained by a 10/20 V boost converter operating at 1-2 MHz switching frequencies. In the presence of the 

dynamic controller the conversion efficiency underwent a sharp improvement, increasing with load current and 

switching frequency: at 6A/2MHz the improvement exceeded 1%. The trend of the efficiency improvement with load 

current can be explained taking into account that when the dead time is fixed [3]: 1) the reduction of switching times 

with current causes a symmetrical increase of the excess dead time, with increased losses by reverse conduction of M1; 

2) the higher power dissipation causes a rise of junction temperature in transistors, still persisting when M1 is in direct 

condution, and therefore results in a larger RDS(on). At increased frequency, switching times become a relevant part of the 

switching period, also increasing the beneficial effects of the dynamic dead time control.  

 

Figure 10.  

Conversion efficiency Vs. load at different switching frequencies (VOUT= 20V). 

4. CONCLUSIONS 

This work for the first time reports a dynamic dead time controller for GaN-based boost converters. It takes advantage 

of a predictive approach to stabilize excess dead time against both variations of the fall/rise times and of the turn-off/on 

delays. A discrete-components prototype was built and extensively tested at 1-2 MHz switching frequencies with 

various loads and voltages. The dynamic control succeeded to avoid both shoot-through and switch reverse conduction 

in the presence of significant variations of the switching times. It kept dead time within a range of a few nanoseconds 

above its minimum value, matching actual operating conditions with a smooth and fast transient response. Though 

specifically developed for GaN-based boost converters, the proposed controller could operate with minor modifications 

in any synchronous switching converter stage and other kind of switches. 



ACKNOWLEDGMENTS 

The authors thank Dr. Fabio Celani for fruitful discussions and valuable suggestions about control modelling. 

 

REFERENCES 

[1] Rodrıguez, M., Zhang, Y., Maksimovic, D.: 'High-Frequency PWM Buck Converters using GaN-on-SiC HEMTs', IEEE Trans. 

Pow. Electron., 2014, 29, (5), pp. 2462–2473 

[2] Akuzawa, Y., Ito, Y., Ezoe, T., Sakai, K.: 'A 99% Efficiency GaN Converter for 6.78 MHz Magnetic Resonant Wireless Power 

Transfer System', IET The Journal of Engineering, 2014, pp. 1-3 

[3] Schirone, L., Macellari, M.: 'Design of High-Efficiency Non-Insulated Step-Up Converters', IET Power Electron., 2015, 8, (5), 

pp. 743–749 

[4] Ramachandran R., Nymand M.: 'A 98.8% efficient bidirectional full-bridge isolated dc-dc GaN converter,' Proc. 31th IEEE 

Applied Power Electronics Conference and Exposition (APEC 2016), Long Beach, CA, March 2016, pp. 609-614 

[5] Danilovic, M., Chen, Z., Wang, R., Luo, F., Boroyevich, D., Mattavelli, P.: 'Evaluation of the Switching Characteristics of a 

Gallium-Nitride Transistor', Proc. IEEE Energy Conversion Congress and Exposition, ECCE2011, Phoenix, USA, September 

2011, pp. 2681–2688 

[6] Mishra, U., Parikh, P., Wu, Y.F.: 'AlGaN/GaN HEMTs-an Overview of Device Operation and Applications', Proc. of the IEEE, 

2002, 90, (6), pp. 1022–1031 

[7] 'Gallium Nitride (GaN) Technology Overview', http://epc-co.com/epc/DesignSupport 

[8] Li, P., Bhatia, D., Xue, L., Bashirullah, R.: 'A 90–240 MHz Hysteretic Controlled DC-DC Buck Converter with Digital Phase 

Locked Loop Synchronization', IEEE J. Solid-State Circuits, 2011, 46, (9), pp. 2108–2119 

[9] Zhao, B., Song, Q., Liu, W., Sun, Y.: 'Dead-Time Effect of the High-Frequency Isolated Bidirectional Full-Bridge DC–DC 

Converter: Comprehensive Theoretical Analysis and Experimental Verification', IEEE Trans. Pow. Electron., 2014, 29, (4), pp. 

1667–-1680 

[10] Lobsiger, Y., Kolar, J.W.: 'Closed-Loop di/dt&dv/dt Control and Dead Time Minimization of IGBTs in Bridge Leg 

Configuration', Proc. 14th Workshop on Control and Modeling for Power Electronics, COMPEL 2013, Salt Lake City, Utah, 

USA, June 2013, pp. 1–7 

[11] Bidoggia, B., Maheshwari, R., Nielsen, R.O., Munk-Nielsen, S., Blaabjerg, F.: 'Steady-State Analysis of Dead-Time Effect on 

Bidirectional Buck Converters', Proc. of IEEE 38th Industrial Electronics Society Annual Conference, IECON'12, Montreal, 

Canada, October 2012, pp. 792–797 

[12] da Silva, C.H., Pereira, R.R., da Silva, L.E.B., Lambert-Torres, G., Pinto, J.O.P., Ahn, S.U.: 'Dead-Time Compensation in Shunt 

Active Power Filters using Fast Feedback Loop', Proc. 13th International Conference on Harmonics and Quality of Power, 

ICHQP'08, Wollongong, Australia, September–October 2008, pp. 1–4 



[13] Chierchie, F., Stefanazzi, L., Paolini, E.E., Oliva, A.R.: 'Frequency Analysis of PWM Inverters With Dead-Time for Arbitrary 

Modulating Signals,' IEEE Trans. Pow. Electron., 2014, 29, (5), pp. 2850-2860 

[14] Mosely, I.D., Mellor, P.H., Bingham, C.M.: 'Effect of Dead Time on Harmonic Distortion in Class-D Audio Power Amplifiers', 

IET Electronics Letters, 1999, 35, (12), pp. 950–952 

[15] Jeong, S.G., Park, M.H.: 'The Analysis and Compensation of Dead-Time Effects in PWM Inverters', IEEE Trans. Ind. Electron., 

1991, 38, (2), pp. 108–114 

[16] Liu, Y.H., Chen, C.L.: 'Novel Dead Time Compensation Method for Induction Motor Drives using Space Vector Modulation', 

IEE Proceedings - Electric Power Applications, 1998, 145, (4), p. 387–392  

[17] Patel, P.J.,  Patel, V., Tekwani, P.N.: 'Pulse-Based Dead-Time Compensation Method for Self-Balancing Space Vector 

Pulsewidth-Modulated Scheme used in a Three-Level Inverter-Fed Induction Motor Drive', IET Power Electron., 2011, 4, (6), 

pp. 624–631 

[18] Dodson, R.C., Evans, P.D., Tabatabaei Yazdi, H., Harley, S.C.: 'Compensating for Dead Time Degradation of PWM Inverter 

Waveforms', IEE Proceedings B – Electric Power Applications, 1990, 137, (2), pp. 73–81 

[19] Sukegawa, T., Kamiyama, K., Mizuno, K., Matsui, T., Okuyama, T.: 'Fully Digital, Vector-Controlled PWM VSI-Fed ac Drives 

with an Inverter Dead-Time Compensation Strategy', IEEE Trans. Ind. Appl., 1991, 21, (3), pp. 552–559 

[20] Munoz, A.R., Lipo, T.A.: 'On-Line Dead-Time Compensation Technique for Open-Loop PWM-VSI Drives', IEEE Trans. Pow. 

Electron., 2014, 14, (4), pp. 683–689 

[21] Alawieh, H., Tehrani, K.A., Azzouz, Y., Dakyo, B.: 'A Novel Dead Time Elimination Strategy with Zero Crossing 

Enhancement for Voltage Inverters', Proc. 7th IET International Conference on Power Electronics, Machines and Drives PEMD 

2014, Manchester, UK, April 2014, pp. 1–5 

[22] Lee, D.H., Ahn, J.W.: 'A Simple and Direct Dead-Time Effect Compensation Scheme in PWM-VSI', IEEE Trans. Ind. Appl., 

2014, 50, (5), pp. 3017–3025 

[23] Blaabjerg, F., Pedersen, J.K., Thoegersen, P.: 'Improved modulation techniques for PWM-VSI drives', IEEE Trans. Ind. 

Electron., 1997, 44, (1), pp. 87–95 

[24] Bolognani, S., Ceschia, M., Mattavelli, P., Paccagnella, A., Zigliotto, M.: 'Improved FPGA-Based Dead Time Compensation  

for SVM Inverters', Proc. 2nd IEE International Conference on Power Electronics, Machines and Drives, PEMD2004, 

Edinburgh, UK, March–April, 2004, pp. 662–667 

[25] Sun, Z., Chew, K.W.R., Tang, H., Siek, L.: 'Adaptive Gate Switching Control for Discontinuous Conduction Mode DC–DC 

Converter', IEEE Trans. Pow. Electron., 2014, 29, (3), pp. 1311–1320 

[26] Han, D., Sarlioglu, B.: 'Deadtime Effect on GaN-Based Synchronous Boost Converter and Analytical Model for Optimal 

Deadtime Selection', IEEE Trans. Pow. Electron., 2016, 31, (1), pp. 601–612 

[27] Biswas, S.K., Basak, B., Rajashekara, K.S.: 'Gate Drive Methods for IGBTs in Bridge Configurations', Proc. 1994 IEEE 

Industry Applications Society Annual Meeting, Denver, USA, October 1994, pp. 1310–1316 

[28] Texas Instruments, 'Designing fast response synchronous buck regulators with the TPS5210', Report SLVA044, (Texas 

Instruments, 1999), pp. 1–46 



[29] Manohar, S.K., Balsara, P.T.: '94.6% Peak Efficiency DCM Buck Converter with Fast Adaptive Dead-Time Control', Proc. 

European Solid State Circuit Conference, ESSCIRC'13, Bucharest, Romania, September 2013, pp. 153–156 

[30] Grezaud, R., Ayel, F., Rouger, N., Crebier, J.C.: 'A Gate Driver With Integrated Deadtime Controller', IEEE Trans. Pow. 

Electron., 2016, 31, (12), pp. 8409-8421 

[31] Trescases, O., Ng, W.T., Chen, S.: 'Precision Gate Drive Timing in a Zero-Voltage-Switching DC-DC Converter', Proc. 16th 

International Symposium on Power Semiconductor Devices and ICs, ISPSD'04, Kitakyushu, Japan, May 2004, pp 55–58 

[32] Della Monica, E., Stefanutti, W., Mattavelli, P., Tedeschi, E., Tenti, P., Saggini, S.: 'Predictive Digital Control for Voltage 

Regulation Module Applications', Proc. International Conference on Power Electronics and Drives Systems, PEDS'05, Kuala 

Lumpur, Malaysia, November–December 2005, pp. 32–37 

[33] Yousefzadeh, V., Maksimovic, D.: 'Sensorless Optimization of Dead Times in DC–DC Converters With Synchronous 

Rectifiers', IEEE Trans. Pow. Electron., 2006, 21, (4), pp. 994–1002 

[34] Yan, W., Pi, C., Li, W., Liu, R.: 'Dynamic Dead-Time Controller for Synchronous Buck Converters', IET Electronics Letters, 

2010, 46, (2), pp. 164–165 

[35] Yonezawa, Y., Nakao, H., Sasaki, T., Nakashima, Y., Maruyama, T.: 'Digital Dead-Time Control for Two Phase Double-Ended 

Forward Converter', Proc. IEEE 10th International Conference on Power Electronics and Drive Systems, PEDS'13, Kitakyushu, 

Japan, April 2013, pp. 1144–1149 

[36] Peterchev, A., Sanders, S.R.: 'Digital Multimode Buck Converter Control with Loss-Minimizing Synchronous Rectifier 

Adaptation', IEEE Trans. Pow. Electron., 2006, 21, (6), pp. 1588–1599 

[37] Huang, H.W., Chen, K.H., Kuo, S.Y.: 'Dithering Skip Modulation, Width and Dead Time Controllers in Highly Efficient DC-

DC Converters for System-On-Chip Applications', IEEE J. Solid-State Circuits, 2007, 42, (11), pp. 2451–2465 

[38] Hong, Y.U., Choi, B.K., Woo, Y.J., Lee, M.C., Kwak, T.W., Le, H.P., Cho, G.H.: 'Optimum Efficiency-Tracking Gate Driver 

using Adaptive Dead-time Control for Single Chip DC-DC Converter', Proc. IEEE 37th Power Electronics Specialists 

Conference PESC'06, Jeju, South Korea, June 2006, pp. 1–5 

[39] Acker, B., Sullivan, C.R., Sanders, S.R.: 'Synchronous Rectification with Adaptive Timing Control', Proc. 26th Annual IEEE 

Power Electronics Specialists Conference, PESC'95, Atlanta, USA, June 1995, pp. 88–95 

[40] Lee, S., Jung, S., Park, C., Rim, C.T., Cho, G.H.: 'Accurate Dead-Time Control for Synchronous Buck Converter With Fast 

Error Sensing Circuits', IEEE Trans. Circ. Syst. I, 60, (11), pp. 3080–3089 

[41] Schirone, L., Macellari, M.: 'General Purpose Dynamic Dead Time Generator', Proc. IEEE 2015 International Conference on 

Clean Electrical Power, ICCEP'15, Taormina, Italy, June 2015, pp. 529–533 


