In this paper we propose a methodology to assess the syntax complexity of a sentence representing it as sequence of parts-of-speech and comparing Recurrent Neural Networks and Support Vector Machine. We have carried out experiments in English language which are compared with previous results obtained for the Italian one

Schicchi, D., Lo Bosco, G., Pilato, G. (2019). Machine Learning Models for Measuring Syntax Complexity of English Text. In A.V. Samsonovich (a cura di), Biologically Inspired Cognitive Architectures 2019, Proceedings of the Tenth Annual Meeting of the BICA Society (pp. 449-454). Springer [10.1007/978-3-030-25719-4_59].

Machine Learning Models for Measuring Syntax Complexity of English Text

Schicchi, Daniele;Lo Bosco, Giosué;Pilato, Giovanni
2019-01-01

Abstract

In this paper we propose a methodology to assess the syntax complexity of a sentence representing it as sequence of parts-of-speech and comparing Recurrent Neural Networks and Support Vector Machine. We have carried out experiments in English language which are compared with previous results obtained for the Italian one
2019
978-3-030-25718-7
978-3-030-25719-4
Schicchi, D., Lo Bosco, G., Pilato, G. (2019). Machine Learning Models for Measuring Syntax Complexity of English Text. In A.V. Samsonovich (a cura di), Biologically Inspired Cognitive Architectures 2019, Proceedings of the Tenth Annual Meeting of the BICA Society (pp. 449-454). Springer [10.1007/978-3-030-25719-4_59].
File in questo prodotto:
File Dimensione Formato  
10.1007@978-3-030-25719-459.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 175.82 kB
Formato Adobe PDF
175.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Machine_learning_models_for_Measuring_Syntax_Complexity_of_English_Text_post_print.pdf

accesso aperto

Tipologia: Post-print
Dimensione 168.73 kB
Formato Adobe PDF
168.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/367182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact