The boundary element method is employed in this study in conjunction with the finite element method to build a multi-physics hybrid numerical model for the computational study of stress corrosion cracking related to hydrogen diffusion in polycrystalline microstructures. More specifically a boundary integral representation is used to represent the micro-mechanics of the aggregate while an explicit finite element method is used to model inter-granular hydrogen diffusion. The inter-granular interaction between contiguous grains is represented through cohesive laws, whose physical parameters depend on the concentration of inter-granular hydrogen, diffusing along the interfaces according to the Fick's second law. The model couples the effectiveness of the polycrystalline boundary element micro-mechanics model with the generality of the finite element representation of the inter-granular diffusion process. Few numerical tests are reported, to demonstrate the potential of the proposed technique.
Ivano Benedetti, Vincenzo Gulizzi, Alberto Milazzo (2019). Modelling stress-corrosion microcracking in polycrystalline materials by the Boundary Element Method. In A.M. Ivano Benedetti (a cura di), Advances in Boundary Element and Meshless Techniques XX (pp. 194-199). Palermo.
Modelling stress-corrosion microcracking in polycrystalline materials by the Boundary Element Method
Ivano Benedetti;Vincenzo Gulizzi;Alberto Milazzo
2019-01-01
Abstract
The boundary element method is employed in this study in conjunction with the finite element method to build a multi-physics hybrid numerical model for the computational study of stress corrosion cracking related to hydrogen diffusion in polycrystalline microstructures. More specifically a boundary integral representation is used to represent the micro-mechanics of the aggregate while an explicit finite element method is used to model inter-granular hydrogen diffusion. The inter-granular interaction between contiguous grains is represented through cohesive laws, whose physical parameters depend on the concentration of inter-granular hydrogen, diffusing along the interfaces according to the Fick's second law. The model couples the effectiveness of the polycrystalline boundary element micro-mechanics model with the generality of the finite element representation of the inter-granular diffusion process. Few numerical tests are reported, to demonstrate the potential of the proposed technique.File | Dimensione | Formato | |
---|---|---|---|
Modelling stress-corrosion.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
2.64 MB
Formato
Adobe PDF
|
2.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.