We propose a deformed version of the commutation rule introduced in 1967 by Buchdahl to describe a particular model of the truncated harmonic oscillator. The rule we consider is defined on a N-dimensional Hilbert space H N , and produces two biorthogonal bases of H N which are eigenstates of the Hamiltonians h=[Formula presented](q 2 +p 2 ), and of its adjoint h † . Here q and p are non-Hermitian operators obeying [q,p]=i(1−Nk), where k is a suitable orthogonal projection operator. These eigenstates are connected by ladder operators constructed out of q, p, q † and p † . Some examples are discussed.

Bagarello, F. (2018). Finite-dimensional pseudo-bosons: A non-Hermitian version of the truncated harmonic oscillator. PHYSICS LETTERS A, 382(36), 2526-2532 [10.1016/j.physleta.2018.06.044].

Finite-dimensional pseudo-bosons: A non-Hermitian version of the truncated harmonic oscillator

Bagarello, F.
2018-01-01

Abstract

We propose a deformed version of the commutation rule introduced in 1967 by Buchdahl to describe a particular model of the truncated harmonic oscillator. The rule we consider is defined on a N-dimensional Hilbert space H N , and produces two biorthogonal bases of H N which are eigenstates of the Hamiltonians h=[Formula presented](q 2 +p 2 ), and of its adjoint h † . Here q and p are non-Hermitian operators obeying [q,p]=i(1−Nk), where k is a suitable orthogonal projection operator. These eigenstates are connected by ladder operators constructed out of q, p, q † and p † . Some examples are discussed.
2018
Bagarello, F. (2018). Finite-dimensional pseudo-bosons: A non-Hermitian version of the truncated harmonic oscillator. PHYSICS LETTERS A, 382(36), 2526-2532 [10.1016/j.physleta.2018.06.044].
File in questo prodotto:
File Dimensione Formato  
FDPB_R1.pdf

accesso aperto

Descrizione: versione non editoriale
Dimensione 281.05 kB
Formato Adobe PDF
281.05 kB Adobe PDF Visualizza/Apri
finite-dimensional.pdf

Solo gestori archvio

Descrizione: versione editoriale
Dimensione 6.22 MB
Formato Adobe PDF
6.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/356741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact