
Finite-dimensional pseudo-bosons: a non-Hermitian
version of the truncated harmonic oscillator

F. Bagarello
DEIM -Dipartimento di Energia, ingegneria dell’ Informazione e modelli Matematici,
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Abstract

We propose a deformed version of the commutation rule introduced in 1967 by Buchdahl

to describe a particular model of the truncated harmonic oscillator. The rule we consider is

defined on a N -dimensional Hilbert space HN , and produces two biorhogonal bases of HN
which are eigenstates of the Hamiltonians h = 1

2(q2+p2), and of its adjoint h†. Here q and

p are non-Hermitian operators obeying [q, p] = i(11−Nk), where k is a suitable orthogonal

projection operator. These eigenstates are connected by ladder operators constructed out

of q, p, q† and p†. Some examples are discussed.
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I Introduction

Quantum mechanics is often thought to be naturally associated to self-adjoint (or Hermitian1)

operators. In particular, the dynamics is deduced out of a self-adjoint Hamiltonian, and the

observables of the system are almost always assumed to be self-adjoint as well.

In recent years, mainly since the seminal work by Bender and Boettcher, [1], it was un-

derstood that self-adjointness is not an essential requirement, since other operators exist, not

self-adjoint, having purely real (and discrete) spectra. We refer to [2, 3, 4] for some reviews

on this alternative approach. What is interesting, from a mathematical point of view, is that

orthonormal (o.n.) bases of eigenstates are replaced by biorthonormal sets which can be, or

not, bases of the Hilbert space where the physical system lives. Also, different scalar products

can play a role, and this different products produce different adjoints of the same operators.

Moreover, the role of pseudospectra in connection with unbounded operators becomes relevant,

[5]. Then, in a sense, loosing self-adjointness makes the mathematical structure reacher. Not

only that: from a physical point of view the situation is also rather interesting since, for in-

stance, some so-called PT-symmetric Hamiltonians can be naturally used to describe quantum

systems with gain and loss phenomena, see [6, 7] and references therein.

In recent years, in connection with this kind of operators, we have developed a rather

general formalism based on some suitable deformations of the canonical commutation and anti-

commutation relations (CCR and CAR). These deformations produce what we have called

D-pseudo bosons and pseudo-fermions. A rather complete review on both these topics can be

found in [8], to which we refer for several details and for some physical applications. Later on

a similar framework was proposed for quons and for generalized Heisenberg algebra, [9, 10].

Here we consider a deformation of a different commutation rule, originally considered in [11],

and later analyzed in [12], in connection with a truncated version of the harmonic oscillator.

The operator c considered in these papers obeys the following rule

[c, c†] = 11−N K, (1.1)

in which N = 2, 3, 4, . . . is a fixed natural number, while K is a self-adjoint projection operator,

K = K2 = K†, satisfying the equality Kc = 0. The presence of the term N K in (1.1)

makes it possible to find a representation of K and c in terms of N × N matrices. In fact, in

absence of this term we would recover the CCR, which does not admit any finite-dimensional

representation. Here, on the other hand, K, c and c† act on a N -th dimensional Hilbert space,

1We will use these two words as synonymous here.
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which we call HN . In [11] it was shown that the matrices for c and c† are essentially the

truncated versions of the analogous, infinite-dimensional, matrices for the bosonic annihilation

and creation operators. In [11] it was also discussed how to construct an orthonormal (o.n.)

basis of eigenvectors of the self-adjoint operator H0 = 1
2
(Q2

0 + P 2
0 ), where Q0 = c+c†√

2
and

P0 = c−c†√
2 i

are the truncated position and momentum operators. These vectors turn out to be

eigenvectors of both H0 and K, and their explicit construction is strongly based on the fact

that H0 is a positive operator, other than being self-adjoint. This automatically imposes a

lower bound on the possible eigenvalues of H0, bound which was used in [11] to construct the

set of eigenvectors. We will see that, in our extended case, positivity is apparently lost, so that

we cannot adopt the same construction as in [11] for the eigenvectors of our new Hamiltonian

h, constructed in analogy with H0. Moreover, since h 6= h†, it is natural to analyze also what

happens for h†, and this will produce a biorthogonal set of eigenvectors of h†, see Section III,

which is a basis for HN .

The article is organized as follows: in the next section we discuss our deformed version of

the commutation rule (1.1), and we construct a set of eigenvectors for the related truncated

non self-adjoint harmonic oscillator, with Hamiltonian h, see above. We call the operators

a and b appearing in this deformation finite-dimensional pseudo-bosons (FDPBs), since they

can be seen as a truncated version of the D-PBs considered in [8]. We show explicitly how

our construction works for some fixed values of N , and then we generalize the procedure to

generic N . Incidentally we will find that the procedure proposed here is much direct than that

considered in [11]. In Section III the biorthogonal set of eigenvectors of h† is deduced. We also

show how these FDPBs are related to the operators c and K in (1.1). In Section IV we discuss

two examples, while our conclusions are given in Section V.

II Deformed commutation rules

The main object of our research is the following deformed version of the commutation rule

(1.1):

[a, b] = 11−Nk. (2.1)

Here N can be any fixed integer larger than 1, and k is an orthogonal projector: k = k2 = k†.

Extending what is done in [11] we also require that ka = bk = 0. Moreover, a and b are not,

in general, one the adjoint of the other: b 6= a†. This is, in a sense, close to what was done in

[13] first, and in [14] later, for CCR and CAR, and, in fact, what we will show here, is that

we recover the same global functional structure (raising and lowering relations, biorthogonal
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sets, non-Hermitian number-like operators,....) as in the cited papers, even if we work here in

finite-dimensional Hilbert spaces of dimension not necessarily equal to 2, as we did in [14].

The first remark is that operators obeying the commutation rule in (2.1) can also be rep-

resented as matrices acting on a N -dimensional Hilbert space HN . This can be easily seen as

follows: let S0 be an (N − 1) × (N − 1) invertible matrix, and let s be a non-zero complex

number. Then, if S is the diagonal block matrix with blocks S0 and s, S−1 exists (but, in gen-

eral, S−1 6= S†) and, since (1.1) is implemented in HN , we can easily define three new matrices

a = ScS−1, b = Sc†S−1 and k = SKS−1. These operators, since K commutes with S†S,satisfy

(2.1), as well as the equalities k = k2 = k† and ka = bk = 0. So we see that, at least in this sit-

uation, (2.1) can be represented in HN . Of course, other (higher-dimensional) representations

could also exist. However, from now on, a, b and k will be considered as operators on HN .

We start our analysis by introducing two (non-Hermitian) position and momentum-like

operators:

q =
a+ b√

2
, p =

a− b√
2 i
,

so that a = q+ip√
2

and b = q−ip√
2

. As in [11], we introduce the operator h = 1
2
(p2 + q2). Despite

of its expression, and of what happens in [11], h is not Hermitian (h 6= h†). Moreover, it is

not even manifestly positive (h � 0), due to the fact that both q and p are not Hermitian.

Nevertheless, we will show later in this section that the eigenvalues of h are indeed strictly

positive for all possible choices of N . After few computations it is easy to deduce the following

equalities:

[a, h] = a− 1

2
Nak, [b, h] = −b+

1

2
Nkb, (2.2)

as well as 
h = ba+ 1

2
(11−Nk) = ab− 1

2
(11−Nk),

{a, b} = 2h,

kh = hk = −1
2
(11−N)k,

(2.3)

which in particular imply that [h, k] = 0. Then we can look for common eigenstates of h and

k, which we call ϕh′,k′ : {
hϕh′,k′ = h′ϕh′,k′ ,

kϕh′,k′ = k′ϕh′,k′ .
(2.4)

Of course, since k = k2, k′ can only be 0 and 1. In particular, in analogy with what happens in

[11], the only (possibly) non zero vector ϕh′,k′ , when k′ = 1, is the vector with h′ = 1
2
(N − 1),

ϕ 1
2
(N−1),1; all the other vectors, ϕh′,1, if h′ 6= 1

2
(N − 1), turn out to be zero. In general, the
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vectors ϕh′,k′ are not mutually orthogonal in h′, since h 6= h†, while they are orthogonal in k′,

since k = k†:

〈ϕh′,k′ , ϕh′′,k′′〉 = 〈ϕh′,k′ , ϕh′′,k′〉 δk′,k′′ . (2.5)

It is now possible to prove that, if aϕh′,k′ 6= 0, then this vector must be proportional to

ϕh′−1+ 1
2
Nk′,0. This follows from the following facts: first, since ka = 0, k(aϕh′,k′) = 0. Secondly,

using (2.2), we have

h (aϕh′,k′) = ([h, a] + ah)ϕh′,k′ =

(
h′ − 1 +

1

2
Nk′

)
(aϕh′,k′).

Hence our claim follows. In particular we have

aϕh′,0 = 0 ⇔ h′ =
1

2
. (2.6)

In fact, let us assume that ϕh′,0 6= 0 but aϕh′,0 = 0. Then, using (2.3), we have

0 = b (aϕh′,0) =

(
h− 1

2
(11−Nk)

)
ϕh′,0 =

(
h′ − 1

2

)
ϕh′,0,

so that h′ = 1
2
. The proof of the converse implication, i.e. that aϕ 1

2
,0 = 0, needs to be

postponed but it is essentially based on the fact that HN has dimension N . In fact, we will see

that acting with a and b on vectors of the form ϕh′,k′ we can produce N linearly independent

(l.i.) vectors, including ϕ 1
2
,0. Their linear independence is due to the fact that they correspond

to different, strictly positive, values of h′ (so, even if they are not orthogonal, they are still l.i.),

or to different values of k′ (so they are orthogonal and, therefore, l.i., too). Then, if aϕ 1
2
,0 is

different from zero, it would be proportional to ϕ− 1
2
,0. This vector, being eigenstate of h with

eigenvalue h′ = −1
2

different from the other ones (see below), would be the N + 1-th l.i. vector

in a space with dimension N . This is clearly impossible. Hence (2.6) follows. Notice that, in

particular, this also implies that h admits only strictly positive eigenvalues, even in absence of

an manifest positivity, which was used in [11] to deduce the analogous of (2.6).

After showing that a annihilates ϕ 1
2
,0, we need now to show that b annihilates the vector

ϕ 1
2
(N−1),1:

bϕ 1
2
(N−1),1 = 0. (2.7)

To check this, we start observing that, if kbϕh′,k′ 6= 0, then it must be proportional to ϕh′+1− 1
2
N,1.

First of all, since k2 = k, it is clear that in this case kbϕh′,k′ must an eigenstate of k with

eigenvalue 1. Now, using (2.2) we find first that

hbϕh′,k′ =

(
bh+ b− 1

2
Nkb

)
ϕh′,k′ =

(
h′ + 1− 1

2
Nk

)
bϕh′,k′ ,
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which, when left-multiplied by k, produces

h (kbϕh′,k′) =

(
h′ + 1− 1

2
N

)
(kbϕh′,k′) .

Then, as stated, if kbϕh′,k′ 6= 0, it must be proportional to ϕh′+1− 1
2
N,1. It is now possible to

see that the only possibility for having kbϕh′,k′ 6= 0 is that h′ = N − 3
2
. In other words: if

h′ 6= N − 3
2

then kbϕh′,k′ = 0, independently of k′.

To prove this claim we use (2.2) and the equality kh = −1
2
(11−N)k in (2.3). Few algebraic

manipulations produce now the equality kbh =
(
N − 3

2

)
kb. Therefore

(
h′ −

(
N − 3

2

))
kbϕh′,k′ =

0, which is only possible, if kbϕh′,k′ 6= 0, when h′ = N − 3
2
. Then, if h′ 6= N − 3

2
, kbϕh′,k′ must

be zero. If we now compute kbϕN− 3
2
,k′ we find, because of what deduced before, that this is

proportional to ϕ 1
2
(N−1),1. Notice that, in principle, kbϕN− 3

2
,k′ could still be zero. However,

inspired by the results in [11], we will assume that this is not so, and check this assumption in

explicit examples.

Formula (2.7) is now a simple consequence of the fact that bk = 0. Indeed we have, for

what we have deduced so far, that bϕ 1
2
(N−1),1 must be proportional to b

(
kbϕN− 3

2
,k′

)
, which is

the zero vector since bk = 0. Summarizing we have two different vectors, ϕ 1
2
,0 and ϕ 1

2
(N−1),1,

which are annihilated respectively by a and b. This is very close to what happens in [11], where

we have also two vectors annihilated by the operator c in (1.1), and by its hermitian conjugate

c†. A similar feature is observed in ordinary CAR, where the lowering operator annihilates

the vacuum and its adjoint annihilates the upper lever. Moreover, in [11], it is shown that c

behaves as a sort of lowering operator, while c† behaves as a raising operator. We expect that

a similar behavior can be deduced here for a and b, and this is in-fact what we will see now.

II.1 Two preliminary examples

Before discussing the general case (i.e. generic N > 2), we briefly discuss how the construction

works when N = 2 and when N = 3. It is worth stressing that our construction is significantly

different from the one proposed in [11], because of the many properties related to the particular

structure arising from (1.1), which are lost here.

If N = 2 the commutation rule in (2.1) become [a, b] = 11−2k. The Hilbert space H2 is two-

dimensional, and the two vectors in (2.6) and (2.7), ϕ 1
2
,0 and ϕ 1

2
,1, turn out to be orthogonal:〈

ϕ 1
2
,0, ϕ 1

2
,1

〉
= 0, since they correspond to different eigenvalues of the Hermitian operator k.

Then F (2)
ϕ = {ϕ 1

2
,0, ϕ 1

2
,1} is an o.n. basis for H2 (assuming a good normalization). Of course,
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the eigenvalue 1
2

of the Hamiltonian h is degenerate. As discussed before, aϕ 1
2
,0 must be zero.

Otherwise, it would be proportional to ϕ− 1
2
,0, so that the vectors ϕ 1

2
,0, ϕ 1

2
,1 and aϕ 1

2
,0 would

be l.i., in contrast with the fact that dim(H2) = 2. Hence aϕ 1
2
,0 = 0.

We have shown in (2.7) that bϕ 1
2
,1 = 0. So, in order to fully understand the situation, in

this simple case we still need to compute aϕ 1
2
,1 and bϕ 1

2
,0. We will now prove that a non zero

constant ν 1
2
,0 exists such that

aϕ 1
2
,1 = ν 1

2
,1 ϕ 1

2
,0, and bϕ 1

2
,0 = ν−11

2
,1
ϕ 1

2
,1. (2.8)

In fact, since ha = ah−a+ak, we see first that haϕ 1
2
,1 = (ah−a+ak)ϕ 1

2
,1 = 1

2
aϕ 1

2
,1. Moreover

k
(
aϕ 1

2
,1

)
= 0. Then, a non zero constant ν 1

2
,1 should exist such that aϕ 1

2
,1 = ν 1

2
,1ϕ 1

2
,0. As for

the second relation in (2.8), this can be deduced by applying now the operator b from the left

to the first one and using the equality [a, b] = 11− 2k.

The case N = 3 is surely more interesting because, as we will see, the vectors ϕh′,k′ do not

form an o.n. basis for H3.

In this case the commutation rule in (2.1) becomes [a, b] = 11− 3k and, since 1
2
(N − 1) = 1,

our extreme vectors in (2.6) and (2.7) are ϕ 1
2
,0 and ϕ1,1. Since they correspond to different

eigenvalues of the Hermitian operator k, they are orthogonal:
〈
ϕ 1

2
,0, ϕ1,1

〉
= 0. But they are

just two vectors in a three-dimensional space. Therefore, they cannot be a basis for H3. A

third vector, l.i. with respect to the these two, can be easily constructed. To do this, let us

consider the vector aϕ1,1. Using (2.2) and the fact that ka = 0 we deduce that

h (aϕ1,1) =
3

2
(aϕ1,1) , k (aϕ1,1) = 0.

These imply that, if aϕ1,1 6= 0, then it is an eigenvector of h, with eigenvalue 3
2
, and of k,

with eigenvalue 0. Hence we can introduce a vector, ϕ 3
2
,0, and a non-zero (complex) number

ν1,1, such that aϕ1,1 = ν1,1ϕ 3
2
,0. Let then consider the set F (3)

ϕ = {ϕ 1
2
,0, ϕ 3

2
,0, ϕ1,1}. Its vectors

are l.i., since they are orthogonal or they correspond to different eigenvalues of h. Hence F (3)
ϕ

is a basis for H3. Furthermore, using the commutation rule between a and b, it follows that

b ϕ 3
2
,0 = 2ν−11,1ϕ1,1. In a similar way we can also prove that

aϕ 3
2
,0 = ν 3

2
,0 ϕ 1

2
,0, and b ϕ 1

2
,0 = ν−13

2
,0
ϕ 3

2
,0,

for some non zero ν 3
2
,0. This is because aϕ 3

2
,0 turns out to be an eigenstate of h and k, with

eigenvalues 1
2

and 0 respectively. Hence the first equality above follows. The second is a

consequence of this first and of the commutator [a, b] = 11 − 3k. We see that, with a slight

abuse of language, a behaves as a lowering operator while b behaves as a raising operator.
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II.2 Larger N

The situation is just a little more complicated if we take now N ≥ 4: we have two vectors ϕ 1
2
,0

and ϕ 1
2
(N−1),1 which are mutually orthogonal in HN . A third l.i. vector can be defined via the

action of a on ϕ 1
2
(N−1),1. In fact aϕ 1

2
(N−1),1, if it is non-zero, is an eigenstate of h and k with

eigenvalues N − 3
2

and 0 respectively:

h
(
aϕ 1

2
(N−1),1

)
=

(
N − 3

2

)(
aϕ 1

2
(N−1),1

)
, and k

(
aϕ 1

2
(N−1),1

)
= 0.

Then, a non zero constant ν 1
2
(N−1),1 exists such that aϕ 1

2
(N−1),1 = ν 1

2
(N−1),1ϕN− 3

2
,0. Now, since

N ≥ 4, N − 3
2
6= 1

2
. Therefore {ϕ 1

2
,0, ϕN− 3

2
,0, ϕ 1

2
(N−1),1} are l.i., for the usual reasons, but they

cannot form a basis for HN . Acting with b on ϕN− 3
2
,0 we go back to ϕ 1

2
(N−1),1. More in details,

bϕN− 3
2
,0 = (N − 1)ν−11

2
(N−1),1ϕ 1

2
(N−1),1. If we go further, considering now aϕN− 3

2
,0, we find that

this vector satisfies the following eigenvalue equations:

h
(
aϕN− 3

2
,0

)
=

(
N − 5

2

)(
aϕN− 3

2
,0

)
, and k

(
aϕN− 3

2
,0

)
= 0.

Therefore, if aϕN− 3
2
,0 6= 0, a non zero νN− 3

2
,0 exists such that aϕN− 3

2
,0 = νN− 3

2
,0ϕN− 5

2
,0. Also,

bϕN− 5
2
,0 = (N−2)ν−1

N− 3
2
,0
ϕN− 3

2
,0. Of course, ifN > 4, N−5

2
6= 1

2
. Therefore {ϕ 1

2
,0, ϕN− 5

2
,0, ϕN− 3

2
,0, ϕ 1

2
(N−1),1}

are still l.i., but, again, they cannot be a basis for HN . So we consider aϕN− 5
2
,0, and the usual

arguments show that this is proportional to ϕN− 7
2
,0. Hence we have two possibilities: either

N − 9
2

= 1
2
, which means that N = 5, or, when N − 9

2
> 1

2
, N > 5. In the first case

F (5)
ϕ = {ϕ 1

2
,0, ϕN− 7

2
,0, ϕN− 5

2
,0, ϕN− 3

2
,0, ϕ 1

2
(N−1),1} are five l.i. vectors in H5, so they do form a

basis. In fact, acting again with a on ϕN− 7
2
,0 would produce a vector proportional to ϕ 1

2
,0,

which is clearly not l.i. with respect to the ones in F (5)
ϕ . On the other hand, if N > 5, we can

continue our lowering procedure, acting with a on ϕN− 7
2
,0 and getting, this time, a vector which

is surely not proportional to ϕ 1
2
,0. Of course, while a acts as a lowering operator, b behaves

as a raising operator. However, due to the fact that HN is finite-dimensional, b annihilates

ϕ 1
2
(N−1),1, as we have seen. The situation is shown in Figure 1.

Remarks:– (1) We first observe that the values of the νh′,k′ in our construction are unfixed.

The reason is that they will be only (partially) fixed by the biorthogonality condition discussed

in the next section.

(2) The vectors ϕh′,k′ are eigenstates not only of h and k, but also of the operators M̂ = ab
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-

a

a

?
0

�

b
-

a
�

b
-

a

b

?
0

ϕ 1
2
,0 ϕ 3

2
,0 ϕ 5

2
,0 ϕN

2
−3,0 ϕ 1

2
(N−1),1

Figure 1: The ladder operators and their action in HN .

and N̂ = ba. In fact we find:

N̂ϕ 1
2
(N−1),1 = (N − 1)ϕ 1

2
(N−1),1,

N̂ϕN− 3
2
,0 = (N − 2)ϕN− 3

2
,0,

N̂ϕN− 5
2
,0 = (N − 3)ϕN− 5

2
,0,

. . .

. . .

N̂ϕ 1
2
,0 = 0,

(2.9)

while 

M̂ϕ 1
2
(N−1),1 = 0,

M̂ϕN− 3
2
,0 = (N − 1)ϕN− 3

2
,0,

M̂ϕN− 5
2
,0 = (N − 2)ϕN− 5

2
,0,

. . .

. . .

M̂ϕ 1
2
,0 = ϕ 1

2
,0.

(2.10)

This is not surprising since one can check that [N̂ , h] = [M̂, h] = [N̂ , k] = [M̂, k] = 0. In fact,

recalling that ka = bk = 0, we see that [k, M̂ ] = [k, ab] = 0. Moreover, since ba = ab+Nk− 11,

we deduce that [k, N̂ ] = [k, ba] = [k, ab + Nk − 11] = 0. The fact that we also have [N̂ , h] =

[M̂, h] = 0 follows now from the first line in (2.3) which implies that M̂ = h+ 1
2
(11−Nk) and

N̂ = h− 1
2
(11−Nk), recalling further that [h, k] = 0.

III The biorthogonal set

In the literature on non self-adjoint Hamiltonians it is widely discussed how biorthogonal sets

play an essential role in the description of the physical system S: the eigenstates of the Hamil-
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tonian HS of S are not orthogonal, while they are biorthogonal to the elements of the set of

eigenstates of H†S . For this reason, recalling that the operator h = 1
2
(p2 + q2) introduced in

Section II is not Hermitian, h 6= h†, it is natural to consider the problem of the diagonalization

of h†. For that we take the adjoint of (2.1) and we observe that, introducing A = b† and B = a†,

and recalling that k = k†, we get

[A,B] = 11−Nk. (3.1)

Then the pair (A,B) satisfies the same commutation rule as the original pair (a, b). Now,

calling Q = A+B√
2

, P = A−B√
2 i

and H = 1
2
(P 2 + Q2), it follows that Q = q†, P = p† and H = h†.

The analogous of formulas (2.2) and (2.3) can be deduced for these operators. For instance

{A,B} = 2H, BA = H − 1
2
(11−Nk), AB = H + 1

2
(11−Nk), [H, k] = 0 and so on. Moreover,

we also have Bk = kA = 0. We call now ψh′,k′ the common eigenstates of H and k:{
Hψh′,k′ = h′ψh′,k′ ,

kψh′,k′ = k′ψh′,k′ .
(3.2)

Then, standard arguments show that the sets Fϕ = {ϕh′,k′} and Fψ = {ψh′,k′} are biorthogonal

and, if we choose properly the normalization of the vectors, they are also biorthonormal:

〈ψh′,k′ , ϕh′′,k′′〉 = δh′,h′′δk′,k′′ . (3.3)

The construction of the set F (N)
ψ reflects that of F (N)

ϕ for the different values of N . For

instance, if N = 2, we only have two vectors F (2)
ψ = {ψ 1

2
,0, ψ 1

2
,1} and they satisfy the following

equations:

Aψ 1
2
,0 = Bψ 1

2
,1 = 0, and Aψ 1

2
,1 = µ 1

2
,1ψ 1

2
,0, Bψ 1

2
,0 = µ−11

2
,1
ψ 1

2
,1,

for some non-zero µ 1
2
,1. This has to be related to ν 1

2
,1 if we want F (2)

ϕ and F (2)
ψ to be biorthonor-

mal. In fact, while
〈
ψ 1

2
,1, ϕ 1

2
,0

〉
=
〈
ψ 1

2
,0, ϕ 1

2
,1

〉
= 0, automatically, if we further choose the

normalization of ϕ 1
2
,0 and ψ 1

2
,0 by requiring

〈
ψ 1

2
,0, ϕ 1

2
,0

〉
= 1, then we also get

〈
ψ 1

2
,1, ϕ 1

2
,1

〉
= 1

at least if

ν 1
2
,1 µ 1

2
,1 = 1. (3.4)

A similar situation is recovered for larger values of N . For instance, if N = 3, the set F (3)
ψ =

{ψ 1
2
,0, ψ 3

2
,0, ψ1,1} obeys the following ladder rules, see Figure ??:

Aψ1,1 = µ1,1ψ 3
2
,0, Aψ 3

2
,0 = µ 3

2
,0ψ 1

2
,0, Bψ 3

2
,0 = 2µ−11,1ψ1,1, Bψ 1

2
,0 = µ−13

2
,0
ψ 3

2
,0, (3.5)

10



for some suitable and non zero µ1,1 and µ 3
2
,0, as well as Aψ 1

2
,0 = Bψ1,1 = 0. Using now (2.1)

and assuming that
〈
ψ 1

2
,0, ϕ 1

2
,0

〉
= 1 we recover biorthonormality of the sets F (3)

ψ and F (3)
ϕ if we

require

ν 3
2
,0 µ 3

2
,0 =

1

2
ν1,1 µ1,1 = 1. (3.6)

It is straightforward to extend these results to larger N . In all cases, the following resolution

of the identity in HN is satisfied:∑
(h′,k′)∈GN

|ψh′,k′ 〉〈ϕh′,k′| =
∑

(h′,k′)∈GN

|ϕh′,k′ 〉〈ψh′,k′ | = 11,

where we have used the Dirac bra-ket notation and where the sum is extended, for each fixed

N , to all the possible pairs of (h′, k′), see Section II. We have called GN this set.

The two biorthonormal sets F (N)
ϕ and F (N)

ψ can be used, together, to represent the operators

a, b, and their adjoints, as a sum of rank-one operators. For instance, if N = 2, we have

a = ν 1
2
,1 |ϕ 1

2
,0 〉〈ψ 1

2
,1|, b = ν−11

2
,1
|ϕ 1

2
,1 〉〈ψ 1

2
,0|, (3.7)

whose adjoints are a† = ν 1
2
,1 |ψ 1

2
,1 〉〈ϕ 1

2
,0| and b† = ν−11

2
,1
|ψ 1

2
,0 〉〈ϕ 1

2
,1|. It is interesting to observe

that the operators a† and b† given here coincide with B and A if condition (3.4) is satisfied.

In a similar way, if N = 3, a and b can be written as

a = ν1,1 |ϕ 3
2
,0 〉〈ψ1,1|+ ν 3

2
,0 |ϕ 1

2
,0 〉〈ψ 3

2
,0|, b = 2ν−11,1 |ϕ1,1 〉〈ψ 3

2
,0|+ ν−13

2
,0
|ϕ 3

2
,0 〉〈ψ 1

2
,0|, (3.8)

and the adjoint a† and b† which we deduce out of these behaves as the operators B and A in

(3.5) if conditions in (3.6) are satisfied. The same is true for larger values of N .

It turns out that a† and b† are respectively equal to the ladder operators B and A for F (4)
ψ .

This is a general characteristic of the construction: the same constraints on µh′,k′ and νh′,k′ which

make of F (N)
ϕ and F (N)

ψ biorthonormal bases ensure that the adjoint of the representations of a

and b coincide exactly with B and A.

III.1 Relation with (1.1)

At the beginning of Section II we have already discussed how (2.1) can be obtained from (1.1),

by means of a similarity map. In this section we discuss the inverse construction, i.e. we show

how, starting from (2.1), it is possible to construct two operators, c and K, which obey the

11



commutation rule in (1.1) and such that Kc = 0. Our construction is similar, but not identical,

to that proposed for pseudo-fermions, [14].

We start introducing the operators

Sϕ =
∑

(h′,k′)∈GN

|ϕh′,k′ 〉〈ϕh′,k′ |, Sψ =
∑

(h′,k′)∈GN

|ψh′,k′ 〉〈ψh′,k′ |. (3.9)

These are bounded, invertible, Hermitian and positive. Moreover, they are one the inverse of

the other, SϕSψ = SψSϕ = 11, and satisfy the following:

Sϕψh′,k′ = ϕh′,k′ , Sψϕh′,k′ = ψh′,k′ , (3.10)

for all (h′, k′) ∈ GN . Sψ admits an unique positive square root, which is also invertible. Hence

we can define

eh′,k′ = S
1/2
ψ ϕh′,k′ , c = S

1/2
ψ aS

−1/2
ψ , (3.11)

for (h′, k′) ∈ GN . Now, it is a simple computation to prove that the set Fe = {eh′,k′} is an o.n.

basis for HN . It is also possible to check that c†, other than being equal to S
−1/2
ψ a†S

1/2
ψ , can

also be written as c† = S
1/2
ψ bS

−1/2
ψ . In fact S

−1/2
ψ a†S

1/2
ψ = S

1/2
ψ bS

−1/2
ψ if and only if Sψb = a†Sψ,

i.e. if Sψ intertwines between b and a†. This equality can be easily deduced by considering the

action of Sψb and a†Sψ on the vectors of Fϕ. In fact, it turns out that Sψbϕh′,k′ = a†Sψϕh′,k′

for all (h′, k′) ∈ GN , at least if we assume that µh′,k′ = νh′,k′ for all (h′, k′) ∈ GN . This further

constraint simplifies the conditions we have found before to guarantee the biorthonormality of

the sets F (N)
ϕ and F (N)

ψ and in the analysis of the representation of the operators a, a†, b and

b† in terms of these vectors.

Now, since c = S
1/2
ψ aS

−1/2
ψ and c† = S

1/2
ψ bS

−1/2
ψ , it turns out that [c, c†] = 11−NK, where K

is defined as K = S
1/2
ψ kS

−1/2
ψ . Of course K2 = K and Kc = 0. Moreover K = K† if and only

if k commutes with Sψ, which is true: Sψkϕh′,k′ = k′Sψϕh′,k′ = k′ψh′,k′ = kψh′,k′ = kSψϕh′,k′ .

Hence, since HN has finite dimension, [k, Sψ] = 0.

Summarizing we can say that it is possible to deform (1.1) to get (2.1), but we can also go

the other way around, i.e. we can consider (2.1) as our starting point, and use the eigenvectors

of h, h† and k constructed out of a and b to define new operators satisfying (1.1).

IV Examples

In this section we consider a pair of examples. The first one is more mathematical, while in the

second we connect our general settings with a truncated version of the Swanson model, [16],

12



which is very well known among the PT-quantum mechanical community, being one non trivial

example of manifestly non self-adjoint Hamiltonian which is isospectral to the standard (i.e.,

self-adjoint) harmonic oscillator.

IV.1 An example with N = 4

Let a and b the following four-by-four matrices:

a =
1

1 + α3


(1−

√
2)α2 1 +

√
2α3 (

√
2− 1)α 0

−
√

2α
√

2α2
√

2
√

3α(1 + α3)

α3 α −α2
√

3(1 + α3)

0 0 0 0


and

b =
1

1 + α3


α −α2 α3 0

1 +
√

2α3 (
√

2− 1)α (1−
√

2)α2 0√
2α2

√
2 −

√
2α 0

−
√

3α
√

3α2
√

3 0

 ,

where α is a real constant different from −1. These operators satisfy the commutation rule

[a, b] = 11− 4k, where k is the diagonal matrix on H4 with three zeros and a single one in the

main diagonal: k = diag(0, 0, 0, 1). Hence ka = bk = 0. The hamiltonian h = ba + 1
2
(11 − 4k)

looks like

h =
1

1 + α3


1
2
(1 + 3α2) α −α2 0

−α2 1
2
(3 + 5α3) α 0

−2α 2α2 1
2
(5 + α3) 0

0 0 0 3
2

 ,

which is manifestly not self-adjoint if α 6= 0: h 6= h†. We will show now how the procedure

proposed in this paper can be applied and produces two biorthogonal bases of eigenvectors of

h and h†, which are also eigenvectors of the operator k. We start by looking at the vector

ϕ 3
2
,1 which is annihilated by b: bϕ 3

2
,1 = 0. This forces ϕT3

2
,1

, the transpose of ϕ 3
2
,1, to be of

the following form: ϕT3
2
,1

=
(

0 0 0 γ4

)
, where γ4 could be any non zero complex number,

(almost) fixed later by the normalization.

Now, since aϕ 3
2
,1 = ν 3

2
,1ϕ 5

2
,0, we easily check that ϕT5

2
,0

=
√
3 γ4
ν 3
2 ,1

(
0 α 1 0

)
. Still, since

aϕ 5
2
,0 = ν 5

2
,0ϕ 3

2
,0, we deduce that ϕT3

2
,0

=
√
6 γ4

ν 3
2 ,1

ν 5
2 ,0

(
0 1 0 0

)
, while, using the equality

13



aϕ 3
2
,0 = ν 3

2
,0ϕ 1

2
,0, we get ϕT1

2
,0

=
√
6 γ4

ν 3
2 ,1

ν 5
2 ,0

ν 3
2 ,0

(
1 0 α 0

)
. An explicit check shows that

aϕ 1
2
,0 = 0, and that bϕ 5

2
,0 = 3ν−13

2
,1
ϕ 3

2
,1, bϕ 3

2
,0 = 2ν−15

2
,0
ϕ 5

2
,0 and bϕ 1

2
,0 = ν−13

2
,0
ϕ 3

2
,0, as they should.

The biorthogonal set F (4)
ψ can be constructed in a similar way: we start looking for a four

dimensional vector ψ 3
2
,1 which is annihilated by B = a†. This vector is ψT3

2
,1

=
(

0 0 0 γ′4

)
.

Then, acting with A several times on ψ 3
2
,1, we find the other vectors of F (4)

ψ . In particular,

since Aψ 3
2
,1 = µ 3

2
,1ψ 5

2
,0, we find ψT5

2
,0

=
√
3 γ′4

(1+α3)µ 3
2 ,1

(
−α α2 1 0

)
, while ψ 3

2
,0 and ψ 1

2
,0 can

be deduced by acting one or two times with A on ψ 5
2
,0. We get

ψ 3
2
,0 =

√
6 γ′4

(1 + α3)µ 3
2
,1µ 5

2
,0


α2

1

−α
0

 , ψ 1
2
,0 =

√
6 γ′4

(1 + α3)µ 3
2
,1µ 5

2
,0µ 3

2
,0


1

−α
α2

0

 .

A direct check shows that 〈ϕh′,k′ , ψh′′,k′′〉 = 0 if (h′, k′) 6= (h′′, k′′). As for the normalization, the

situation is the following:
〈
ϕ 3

2
,1, ψ 3

2
,1

〉
= 1 if γ4γ

′
4 = 1; then,

〈
ϕ 5

2
,0, ψ 5

2
,0

〉
= 1 if ν 3

2
,1µ 3

2
,1 = 3;

now,
〈
ϕ 3

2
,0, ψ 3

2
,0

〉
= 1 if ν 5

2
,0µ 5

2
,0 = 2. If all these equalities hold, then

〈
ϕ 1

2
,0, ψ 1

2
,0

〉
= 1 if

ν 3
2
,0µ 3

2
,0 = 1. The sets F (4)

ϕ and F (4)
ψ obtained in this way are eigenstates of h, h† and of k, with

the right eigenvalues.

If we now, for instance, fix γ4 = 1, ν 3
2
,1 = µ 3

2
,1 =
√

3, ν 5
2
,0 = µ 5

2
,0 =
√

2 and ν 3
2
,0 = µ 3

2
,0 = 1,

we obtain the following families of vectors:

ϕ 1
2
,0 =


1

0

α

0

 , ϕ 3
2
,0 =


α

1

0

0

 , ϕ 5
2
,0 =


0

α

1

0

 , ϕ 3
2
,1 =


0

0

0

1

 ,

while

ψ 1
2
,0 =

1

(1 + α3)


1

−α
α2

0

 , ψ 3
2
,0 =

1

(1 + α3)


α2

1

−α
0

 , ψ 5
2
,0 =

1

(1 + α3)


−α
α2

1

0

 , ψ 3
2
,1 =


0

0

0

1

 .
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If we fix, for concreteness, α = 12, we find in particular that the operators Sϕ and Sψ are

Sϕ =
1

4


5 2 2 0

2 5 2 0

2 2 5 0

0 0 0 4

 , Sψ =
1

27


28 −8 −8 0

−8 28 −8 0

−8 −8 28 0

0 0 0 27

 .

Following Section III.1, and (3.11) in particular, we get the following self-adjoint version of the

system:

c =


1
9

(
1 +
√

2 +
√

3−
√

6
)

1
9

(
4 +
√

2 + 2
√

3
)

1
9

(
−2 +

√
2 +
√

6
)

1√
3
− 1

1
9

(
1− 2

√
2−
√

3
)

1
9

(
−2 +

√
2 +
√

6
)

2
9

(
2 + 2

√
2−
√

3 +
√

6
)

1√
3

1
9

(
1 + 4

√
2− 2

√
6
)

1
9

(
1 +
√

2 +
√

3−
√

6
)

1
9

(
1− 2

√
2−
√

3
)

1 + 1√
3

0 0 0 0

 ,

and the following o.n. basis:

e 1
2
,0 =


1
3

+ 1√
3

1
3
− 1√

3
1
3

0

 , e 3
2
,0 =


1
3

1
3

+ 1√
3

1
3
− 1√

3

0

 , e 5
2
,0 =


1
3
− 1√

3
1
3

1
3

+ 1√
3

0

 , e 3
2
,1 =


0

0

0

1

 .

It is easy to check that c, together with its adjoint c†, satisfies (1.1), and that the vectors eh′,k′

are eigenstates of H0 = c†c + 1
2
(11 − 4K) and K, with the right eigenvalues. So our original

system can be mapped into a system as those described in [11]. However, in order to perform

such a mapping, it should be stressed that the eigenvectors ϕh′,k′ (or the ψh′,k′) should be found

first, to construct Sϕ and its inverse, Sψ, and then their square roots. These are in fact the

essential ingredients of formula (3.11).

IV.2 A truncated Swanson model

In [11] the commutation rule (1.1) have been used to consider a truncated version of the har-

monic oscillator, living in the finite dimensional Hilbert spaceHN , and then considering its limit

for diverging N . In [17] it has been discussed that the self-adjoint Hamiltonian of the oscillator

produces, using similarity transformations, several non self-adjoint quadratic Hamiltonians with

known spectra and eigenstates which may, or may not, form bases for the infinite-dimensional

Hilbert space where the model is defined. Among these Hamiltonians, one can recover the
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ones for the shifted harmonic oscillator and for the Swanson model. All these systems can be

described in terms of pseudo-bosonic operators. Hence it might be interesting to consider the

truncated versions of this models. For instance, following [8], we introduce

Hθ =
1

2

(
p2 + x2

)
− i

2
tan(2θ)

(
p2 − x2

)
,

where θ is a real parameter taking value in I =
(
−π

4
, π
4

)
\ {0}. We assume here that [x, p] =

i(11−Nk). Hence Hθ can be rewritten as Hθ = ωθ
(
Bθ Aθ + 1

2
(11−Nk)

)
, where ωθ = 1

cos(2θ)
is

well defined because cos(2θ) 6= 0 for all θ ∈ I, and where the operators Aθ and Bθ are defined

as in [8]: {
Aθ = 1√

2

(
eiθx+ ie−iθp

)
,

Bθ = 1√
2

(
eiθx− ie−iθp

)
,

which satisfy the commutation rule [Aθ, Bθ] = 11 −Nk. Of course, if θ 6= 0, Hθ 6= H†θ . The N

eigenstates of Hθ and those of H†θ can be constructed as shown previously. In particular they

are also eigenstates of the projection operator k, and correspond to the eigenvalues ωθ
2

, 3ωθ
2

,
5ωθ
2

and so on, depending on the explicit value of N . Of course, as in the infinite dimensional

Swanson model, since Hθ and H†θ have the same eigenvalues, we can imagine that they satisfy

a suitable intertwining relations, and in fact we could explicitly deduce that

HθSϕ = SϕH
†
θ .

Notice that this is much better than we get for the infinite dimensional case, [8]. In that case,

in fact, we are only able to prove that the analogous of the intertwining equation in above holds

on each eigenstate of H†θ , but the set of these vectors is not a basis for the Hilbert space: it is

only a D-quasi basis. Here this problem does not exist since in the present situation the set

of eigenstates of Hθ is surely a basis for the finite-dimensional space HN . So, in a sense, the

truncated Swanson model is better than the original one.

Of course, it is clear that this truncation works also for many other quantum mechanical

systems which are similar to the harmonic oscillator, as those listed in [17]. In particular,

for instance, it can be applied to the shifted harmonic oscillator whose Hamiltonian, Hβ =
β
2

(p2 + x2)+ i
√

2 p, β > 0, is manifestly non self-adjoint. In principle, then, we can expect that

this kind of truncation can be relevant is applications, at least for some particular systems. For

instance, a similar framework was used in connection with a biological system in [18]. What we

like in the operators used here is that they obey interesting, and simple, commutation relations

so that they can produce more relevant mathematical and physical results.
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V Conclusions

We have proposed a deformed version of the truncated harmonic oscillator which, in our opinion,

is particularly interesting in connection with PT -quantum mechanics and with its relatives. We

have shown how two biorthogonal bases can be constructed, using raising and lowering operators

which are not necessarily related by an adjoint operation, and that these bases are eigenstates of

two Hamiltonians, one the adjoint of the other, connected by suitable intertwining relations. In

particular, these results extend, and improve, those found in [15], where two biorthogonal bases

were used to define two different pairs of ladder operators but where no closed commutation

rule was deduced.

We have also discussed in details an example in N = 4, and a possible application to the

Swanson model, and in particular we have deduced that the basis property for its truncated,

non-self-adjoint, version is satisfied.
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