In recent years, the key role of oxidative stress in pathogenesis of oral diseases has been emphasized and the use of antioxidant agents has been encouraged. Aphanizomenon flos-aquae (AFA) is a unicellular blue-green alga with antioxidant and anti-inflammatory properties. The aim of this study was the formulation and characterization of mucoadhesive thin layer films loaded with AFA, finalized to the treatment of oxidative stress (OS)-related oral diseases. First, to enhance the bioavailability of AFA constituents, the raw food grade material was appropriately treated by a high frequency homogenization able to disrupt cell walls. Thus, Eudragit® E100-based buccal films were produced by the solvent casting method, containing 7% and 18% of AFA. The films, characterized by uniformity in thickness, weight, and drug content, showed low swelling degree, good muco-adhesiveness and controlled drug release. The mechanical tests showed elastic moduli of films of almost 5 MPa that is well-suitable for human buccal applications without discomfort, besides biaxial tests highlighted a marked material isotropy. Permeation studies through porcine mucosae demonstrated the ability of films to promote AFA penetration in the tissues, and when sublingually administered, they produced a drug flux up to six-fold higher than an AFA solution. The new formulations represent an interesting alternative for the development of cosmetics and nutraceuticals with a functional appeal containing plant extracts.
De Caro, V., Murgia, D., Seidita, F., Bologna, E., Alotta, G., Zingales, M., et al. (2019). Enhanced In Situ Availability of Aphanizomenon Flos-Aquae Constituents Entrapped in Buccal Films for the Treatment of Oxidative Stress-Related Oral Diseases: Biomechanical Characterization and In Vitro/Ex Vivo Evaluation. PHARMACEUTICS, 11(1), 1-23.
Data di pubblicazione: | 2019 |
Titolo: | Enhanced In Situ Availability of Aphanizomenon Flos-Aquae Constituents Entrapped in Buccal Films for the Treatment of Oxidative Stress-Related Oral Diseases: Biomechanical Characterization and In Vitro/Ex Vivo Evaluation |
Autori: | |
Citazione: | De Caro, V., Murgia, D., Seidita, F., Bologna, E., Alotta, G., Zingales, M., et al. (2019). Enhanced In Situ Availability of Aphanizomenon Flos-Aquae Constituents Entrapped in Buccal Films for the Treatment of Oxidative Stress-Related Oral Diseases: Biomechanical Characterization and In Vitro/Ex Vivo Evaluation. PHARMACEUTICS, 11(1), 1-23. |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.3390/pharmaceutics11010035 |
Abstract: | In recent years, the key role of oxidative stress in pathogenesis of oral diseases has been emphasized and the use of antioxidant agents has been encouraged. Aphanizomenon flos-aquae (AFA) is a unicellular blue-green alga with antioxidant and anti-inflammatory properties. The aim of this study was the formulation and characterization of mucoadhesive thin layer films loaded with AFA, finalized to the treatment of oxidative stress (OS)-related oral diseases. First, to enhance the bioavailability of AFA constituents, the raw food grade material was appropriately treated by a high frequency homogenization able to disrupt cell walls. Thus, Eudragit® E100-based buccal films were produced by the solvent casting method, containing 7% and 18% of AFA. The films, characterized by uniformity in thickness, weight, and drug content, showed low swelling degree, good muco-adhesiveness and controlled drug release. The mechanical tests showed elastic moduli of films of almost 5 MPa that is well-suitable for human buccal applications without discomfort, besides biaxial tests highlighted a marked material isotropy. Permeation studies through porcine mucosae demonstrated the ability of films to promote AFA penetration in the tissues, and when sublingually administered, they produced a drug flux up to six-fold higher than an AFA solution. The new formulations represent an interesting alternative for the development of cosmetics and nutraceuticals with a functional appeal containing plant extracts. |
Settore Scientifico Disciplinare: | Settore CHIM/09 - Farmaceutico Tecnologico Applicativo |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
pharmaceutics-11-00035.pdf | article | Versione Editoriale | Open Access Visualizza/Apri | |
pharmaceutics-11-00035-s001.pdf | Supplementary file | Versione Editoriale | Open Access Visualizza/Apri |