We consider a nonlinear parametric Dirichlet problem driven by the p-Laplacian and a reaction which exhibits the competing effects of a singular term and of a resonant perturbation. Using variational methods together with suitable truncation and comparison techniques, we prove a bifurcation-type theorem describing the dependence on the parameter of the set of positive solutions.
Papageorgiou, N.S., Vetro, C., Vetro, F. (2019). Parametric nonlinear singular Dirichlet problems. NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS, 45, 239-254 [10.1016/j.nonrwa.2018.07.006].
Parametric nonlinear singular Dirichlet problems
Vetro, Calogero;Vetro, Francesca
2019-01-01
Abstract
We consider a nonlinear parametric Dirichlet problem driven by the p-Laplacian and a reaction which exhibits the competing effects of a singular term and of a resonant perturbation. Using variational methods together with suitable truncation and comparison techniques, we prove a bifurcation-type theorem describing the dependence on the parameter of the set of positive solutions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2018_PapageorgiouVetroVetro-NANRWA.pdf
Solo gestori archvio
Descrizione: Articolo principale
Dimensione
697.27 kB
Formato
Adobe PDF
|
697.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
334790_Vetro_Parametric nonlinear singular Dirichlet problems.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
311.3 kB
Formato
Adobe PDF
|
311.3 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.