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Abstract

We consider a nonlinear parametric Dirichlet problem driven by the p-Laplacian

and a reaction which exhibits the competing effects of a singular term and

of a resonant perturbation. Using variational methods together with suitable

truncation and comparison techniques, we prove a bifurcation-type theorem

describing the dependence on the parameter of the set of positive solutions.
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1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper,

we study the following nonlinear singular Dirichlet problem

−∆pu(z) = λu(z)−γ + f(z, u(z)) in Ω, u
∣∣
∂Ω

= 0, u ≥ 0. (Pλ)

In the above equation, ∆p denotes the p-Laplace differential operator defined

by

∆pu = div(|∇u|p−2∇u) for all u ∈W 1,p
0 (Ω), 1 < p < +∞.
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In the right hand side (forcing term) λ > 0 is a parameter, λu−γ is the singular

term with 0 < γ < 1 and f(z, x) is a Carathéodory perturbation (that is, for all

x ∈ R, z → f(z, x) is measurable and for a.a. z ∈ Ω, x→ f(z, x) is continuous).

We assume that f(z, ·) exhibits (p− 1)-linear growth near +∞ and asymptoti-5

cally at +∞ is resonant with respect to any nonprincipal variational eigenvalue

of the Dirichlet p-Laplacian. Here “resonant” means that asymptotically as

x → +∞ the quotient
f(z, x)

xp−1
interacts with the spectrum of the Dirichlet p-

Laplacian. This makes the analysis of (Pλ) more difficult, since among other

things the verification of the compactness condition for the energy functional is10

highly nontrivial. So, in problem (Pλ) we have the competing effects of singular

and resonant terms. We are looking for positive solutions and our aim is to

obtain the precise dependence of the set of positive solutions as the parameter

λ > 0 varies. We prove a bifurcation-type result which says that there exists a

critical parameter value λ∗ > 0 such that15

• for all λ ∈ (0, λ∗) problem (Pλ) admits at least two positive solutions;

• for λ = λ∗ problem (Pλ) has at least one positive solution;

• for all λ > λ∗ problem (Pλ) has no positive solutions.

In the past such studies for singular equations were conducted by Sun-Wu-

Long [19] (semilinear equations) and by Papageorgiou-Smyrlis [16] (nonlinear20

equations). In both papers the competition is between a singular term and a

superlinear perturbation. Moreover, the parameter multiplies the superlinear

term, while in problem (Pλ) the parameter λ > 0 multiplies the singular term.

In principle, it is easier to control the perturbation than the singular term. Sun-

Wu-Long [19] prove the existence of a parameter λ∗ > 0 such that for all λ ∈25

(0, λ∗) the problem has at least two positive solutions. A more precise descrip-

tion of the dependence on the parameter λ > 0 of the set of positive solutions,

can be found in Papageorgiou-Smyrlis [16], who prove a bifurcation-type result

as described above. Other multiplicity results for singular Dirichlet problems

can be found in the works of Hirano-Saccon-Shioji [11], Papageorgiou-Rǎdulescu30
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[14] (semilinear equations) and Giacomoni-Schindler-Takáč [9], Papageorgiou-

Rǎdulescu-Repovš [15], Papageorgiou-Smyrlis [17], Perera-Zhang [18]. We should

mention the works of Cirmi-Leonardi [6], Cianci-Cirmi-D’Asero-Leonardi [4],

Cirmi-D’Asero-Leonardi [5] which also deal with operators exhibiting some kind

of degeneracy. It is worth examining whether our results here can be extended35

also to such operators. Finally there is also the recent work of Bonanno-Candito-

Livrea-Papageorgiou [3] treating a similar parametric problem with no singular

term.

2. Mathematical Background - Hypotheses

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote40

the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X,R), we say that ϕ

satisfies the “Cerami condition” (the “C-condition” for short), if the following

property holds:

“Every sequence {un}n∈N ⊆ X such that {ϕ(un)}n∈N ⊆ R is bounded and

(1 + ‖un‖)ϕ′(un) → 0 in X∗ as n → +∞, admits a strongly convergent subse-45

quence”.

This is a compactness-type condition on the functional ϕ. It leads to a de-

formation theorem from which one can derive the minimax theory of the critical

values of ϕ. One of the main results in that theory is the so-called “mountain

pass theorem” of Ambrosetti-Rabinowitz [2]. Below we present a slightly more50

general version of that theorem (see, for example, Gasiński-Papageorgiou [7]).

Theorem 1. If ϕ ∈ C1(X,R) satisfies the C-condition, u0, u1 ∈ X, ‖u1 −

u0‖ > r, max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ‖u − u0‖ = r} = mr and c =

infγ∈Γ max0≤t≤1 ϕ(γ(t)) where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},

then c ≥ mr and c is a critical value of ϕ (that is, there exists û ∈ X such that55

ϕ(û) = c, ϕ′(û) = 0).

The study of (Pλ) involves the use of two spaces. The Sobolev space W 1,p
0 (Ω)

and the Banach space C1
0 (Ω) = {u ∈ C1(Ω) : u

∣∣
∂Ω

= 0}. By ‖ · ‖ we denote the
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norm of W 1,p
0 (Ω). On account of the Poincaré inequality, we can have

‖u‖ = ‖∇u‖p for all u ∈W 1,p
0 (Ω).

The Banach space C1
0 (Ω) is an ordered Banach space with positive (order) cone

given by

C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣∣
∂Ω

< 0

}
,

with
∂u

∂n
being the normal derivative of u and n(·) is the outward unit normal

on ∂Ω.

Recall that W 1,p
0 (Ω)∗ = W−1,p′(Ω) with 1

p + 1
p′ = 1. Consider the nonlinear

map A : W 1,p
0 (Ω)→W−1,p′(Ω) defined by

〈A(u), h〉 =

∫
Ω

|∇u|p−2(∇u,∇h)RNdz for all u, h ∈W 1,p
0 (Ω).

Proposition 1. The map A : W 1,p
0 (Ω) → W−1,p′(Ω) is bounded (that is,

maps bounded sets to bounded sets), continuous, strictly monotone (hence max-60

imal monotone too) and of type (S)+ (that is, if un
w−→ u in W 1,p

0 (Ω) and

lim sup
n→+∞

〈A(un), un − u〉 ≤ 0, then un → u in W 1,p
0 (Ω)).

The next result will be a useful tool in our arguments in Section 3. It can

be found in Marano-Papageorgiou [13] (Proposition 2.1).

Proposition 2. If X is an ordered Banach space with order cone K and u0 ∈65

intK, then for every v ∈ K, we can find tv > 0 such that (tvu0 − v) ∈ K.

Next we fix our notation. Given x ∈ R, we set x± = max{±x, 0}. Then for

u ∈W 1,p
0 (Ω) we define u±(·) = u(·)±. We have

u± ∈W 1,p
0 (Ω), u = u+ − u−, |u| = u+ + u−.

If g : Ω × R → R is a measurable function (for example, a Carathéodory

function), we define

Ng(u)(·) ≡ g(·, u(·)) for all u ∈W 1,p
0 (Ω),
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the Nemytskii (superposition) operator corresponding to g. Evidently, z →

Ng(u)(z) is measurable.

If u1, u2 ∈W 1,p
0 (Ω) and u1 ≤ u2, then by [u1, u2] we denote the order interval

in W 1,p
0 (Ω) defined by

[u1, u2] =
{
u ∈W 1,p

0 (Ω) : u1(z) ≤ u(z) ≤ u2(z) for a.a. z ∈ Ω
}
.

By intC1
0 (Ω)[u1, u2] we denote the interior in the C1

0 (Ω)-norm topology of

[u1, u2] ∩ C1
0 (Ω). Finally if u ∈W 1,p

0 (Ω), then we set

[u) = {u ∈W 1,p
0 (Ω) : u(z) ≤ u(z) for a.a. z ∈ Ω}.

Given ϕ ∈ C1(W 1,p
0 (Ω),R) by Kϕ we denote the critical set of ϕ, that is,

Kϕ = {u ∈W 1,p
0 (Ω) : ϕ′(u) = 0}.

Now let us recall some basic facts about the spectrum of the Dirichlet p-

Laplacian. So, we consider the following nonlinear eigenvalue problem

−∆pu(z) = λ̂|u(z)|p−2u(z) in Ω, u
∣∣
∂Ω

= 0. (1)

We say that λ̂ ∈ R is an “eigenvalue” of (−∆p,W
1,p
0 (Ω)), if problem (1)

admits a nontrivial solution û ∈ W 1,p
0 (Ω). The nontrivial solution û is an70

“eigenfunction” corresponding to the eigenvalue λ̂. The nonlinear regularity

theory (see, for example, Gasiński-Papageorgiou [7], pp. 737-738), implies that

û ∈ C1
0 (Ω). There is a smallest eigenvalue λ̂1 with the following properties:

• λ̂1 > 0 and it is isolated in the spectrum σ̂(p) of (−∆p,W
1,p
0 (Ω)) (that is,

there exists ε > 0 such that (λ̂1, λ̂1 + ε) ∩ σ̂(p) = ∅).75

• λ̂1 is simple (that is, if û, v̂ are two eigenfunctions corresponding to the

eigenvalue λ̂1, then û = ξv̂ with ξ ∈ R \ {0}).

•

λ1 = inf

[‖∇u‖pp
‖u‖pp

: u ∈W 1,p
0 (Ω), u 6= 0

]
. (2)
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In (2) the infimum is realized on the one-dimensional eigenspace correspond-

ing to λ̂1 > 0. From the above properties it follows that the elements of this

eigenspace have fixed sign. Let û1 be the Lp-normalized (that is, ‖û1‖p = 1)80

positive eigenfunction corresponding to λ̂1 > 0. We know that û1 ∈ C+ \ {0}.

Moreover, the nonlinear strong maximum principle (see Gasiński-Papageorgiou

[7], p. 738) implies that û1 ∈ intC+.

Since σ̂(p) is closed and λ̂1 > 0 is isolated, the second eigenvalue λ̂2 of

(−∆p,W
1,p
0 (Ω)) is well-defined by

λ̂2 = inf[λ̂ ∈ σ̂(p) : λ̂ > λ̂1].

Employing the Ljusternik-Schnirelmann minimax scheme (see Gasiński-Papageorgiou

[7]), we can produce a whole sequence {λ̂k}k∈N of distinct eigenvalues of (−∆p,W
1,p
0 (Ω))85

such that λ̂k → +∞ as k → +∞. These eigenvalues are known as “vari-

ational eigenvalues”. Depending on the index used in the execution of the

Ljusternik-Schnirelmann scheme, we can have a corresponding sequence of vari-

ational eigenvalues. All these sequences are the same in the first two elements

which are defined as above. For the rest we do not know if this is the case.90

Also, we do not know if there are other eigenvalues distinct from the variational

eigenvalues. The variational eigenvalues exhaust the spectrum σ̂(p), if p = 2

(linear eigenvalue problem) or if N = 1 (ordinary differential equation). We

mention that, if û is an eigenfunction corresponding to an eigenvalue λ̂ 6= λ̂1,

then û ∈ C1
0 (Ω) is nodal (that is, sign changing). For details on these and95

related issues we refer to Gasiński-Papageorgiou [7].

Now we are ready to introduce our hypotheses on the perturbation term

f(z, x):

H(f): f : Ω × R → R is a Carathéodory function such that for a.a. z ∈ Ω

f(z, 0) = 0, f(z, x) ≥ 0 for all x ≥ 0 and100

(i) for every ρ > 0, there exists aρ ∈ L∞(Ω) such that

|f(z, x)| ≤ aρ(z) for a.a. z ∈ Ω, all |x| ≤ ρ;
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(ii) there exists m ∈ N, m ≥ 2 such that

lim
x→+∞

f(z, x)

xp−1
= λ̂m uniformly for a.a. z ∈ Ω

and if F (z, x) =
∫ x

0
f(z, s)ds, then

pF (z, x)− f(z, x)x→ +∞ as x→ +∞, uniformly for a.a. z ∈ Ω;

(iii) for some r > p, we have

0 ≤ lim inf
x→0+

f(z, x)

xr−1
≤ lim sup

x→0+

f(z, x)

xr−1
≤ c0 uniformly for a.a. z ∈ Ω;

(iv) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ Ω

x→ f(z, x) + ξ̂ρx
p−1

is nondecreasing on [0, ρ].

Remark 1. Since we are interested to find positive solutions and all the above

hypotheses concern the positive semiaxis R+ = [0,+∞), without any loss of

generality we may assume that

f(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0. (3)

Hypotheses H(f) (ii) implies that the equation is resonant at +∞ with respect

to a nonprincipal variational eigenvalue of (−∆p,W
1,p
0 (Ω)).

Example 1. The following function satisfies hypotheses H(f). For the sake of

simplicity we drop the z-dependence:

f(x) =

x
r−1 if 0 ≤ x ≤ 1,

λ̂mx
p−1 + xq−1 − λ̂m if 1 < x,

with 1 < q < p < r < +∞, m ∈ N, m ≥ 2.

3. Positive Solutions105

Let L = {λ > 0 : problem (Pλ) has a positive solution} (the set of admissi-

ble parameters) and Sλ is the set of positive solutions. The nonlinear regularity
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theory and the nonlinear strong maximum principle (see Gasiński-Papageorgiou

[7], pp. 737-738), imply that

Sλ ⊆ intC+

(see Proposition 6 of Papageorgiou-Smyrlis [16]).

We start by considering the following purely singular Dirichlet problem

−∆pu(z) = λu(z)−γ in Ω, u
∣∣
∂Ω

= 0, u ≥ 0. (Qλ)

From Proposition 5 of Papageorgiou-Smyrlis [16], we know that for every

λ > 0, problem (Qλ) has a unique solution ũλ ∈ intC+. Using this unique

solution of (Qλ), we will show that L 6= ∅.

Proposition 3. If hypotheses H(f) hold, then L 6= ∅.110

Proof. Using ũλ ∈ intC+ the unique solution of (Qλ), we introduce the following

truncation of the reaction in problem (Pλ)

f̂λ(z, x) =

λũλ(z)−γ + f(z, x) if x ≤ ũλ(z),

λx−γ + f(z, x) if ũλ(z) < x,

(see (3)). (4)

This is a Carathéodory function. We set F̂λ(z, x) =
∫ x

0
f̂λ(z, s)ds and con-

sider the C1-functional ϕ̂λ : W 1,p
0 (Ω)→ R defined by

ϕ̂λ(u) =
1

p
‖∇u‖pp −

∫
Ω

F̂λ(z, u)dz for all u ∈W 1,p
0 (Ω).

Given u ∈W 1,p
0 (Ω), u ≥ 0, let

Ω1
λ = {z ∈ Ω : u(z) ≤ ũλ(z)} and Ω2

λ = {z ∈ Ω : ũλ(z) < u(z)}.

We have
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∫
Ω

F̂λ(z, u)dz ≤
∫

Ω1
λ

λu1−γdz +

∫
Ω2
λ

λu1−γdz +
λ

1− γ

∫
Ω2
λ

[u1−γ − ũ1−γ
λ ]dz

+

∫
Ω

F (z, u)dz (see (4))

≤ λc1‖u‖+
λ

1− γ

∫
Ω2
λ

u1−γdz +

∫
Ω

F (z, u)dz

(see Theorem 13.17, p. 196, of Hewitt-Stromberg [10])

≤ λc1‖u‖+
λ

1− γ

∫
Ω2
λ

u

ũγλ
dz +

∫
Ω

F (z, u)dz. (5)

Recall that ũλ ∈ intC+. Then ũp
′

λ ∈ intC+ and so using Proposition 2, we

can find c2 > 0 such that

û1 ≤ c2ũp
′

λ ,

⇒ û
1
p′

1 ≤ c
1
p′

2 ũλ,

⇒ ũ−γλ ≤ c3û
− γ
p′

1 for some c3 > 0.

Using the Lemma in Lazer-McKenna [12], we have

û
− γ
p′

1 ∈ Lp
′
(Ω),

⇒ ũ−γλ ∈ Lp
′
(Ω).

So, invoking Hölder’s inequality, we have

λ

1− γ

∫
Ω2
λ

u

ũγλ
dz ≤ λ

1− γ

∫
Ω

u

ũγλ
dz ≤ λc4‖u‖ for some c4 > 0 (recall u ≥ 0).

(6)

Hypotheses H(f) (i), (ii), (iii) imply that

F (z, x) ≤ c5|x|r for a.a. z ∈ Ω, all x ∈ R, some c5 > 0,

⇒
∫

Ω

F (z, u)dz ≤ c6‖u‖r for some c6 > 0. (7)

Returning to (5) and using (6) and (7), we have∫
Ω

F̂λ(z, u)dz ≤ c7[λ‖u‖+ ‖u‖r] for some c7 > 0, all u ∈W 1,p
0 (Ω), u ≥ 0.
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On the other hand, if u ∈W 1,p
0 (Ω), u ≤ 0, then∫

Ω

F̂λ(z, u)dz ≤ c8[λ‖u‖+ ‖u‖r] for some c8 > 0, (see (1)).

Since for every u ∈W 1,p
0 (Ω), we have

u = u+ − u−,

we conclude that∫
Ω

F̂λ(z, u)dz ≤ c9[λ‖u‖+ ‖u‖r] for some c9 > 0, all u ∈W 1,p
0 (Ω).

Therefore for all u ∈W 1,p
0 (Ω) we have

ϕ̂λ(u) ≥ 1

p
‖∇u‖pp − c9[λ‖u‖+ ‖u‖r]

=

[
1

p
− c9(λ‖u‖1−p + ‖u‖r−p)

]
‖u‖p. (8)

Let ϑλ(t) = λt1−p + tr−p, t > 0. Since 1 < p < r, we see that

ϑλ(t)→ +∞ as t→ 0+ and as t→ +∞.

So, there exists t0 ∈ (0,+∞) such that

ϑλ(t0) = inf[ϑλ(t) : t ≥ 0],

⇒ ϑ′λ(t0) = 0,

⇒ λ(p− 1)t−p0 = (r − p)tr−p−1
0 ,

⇒ t0 =

[
λ(p− 1)

r − p

] 1
r−1

.

Then we have

ϑλ(t0) = λ
(r − p)

p−1
r−1

λ
p−1
r−1 (p− 1)

p−1
r−1

+

(
λ(p− 1)

r − p

) r−p
r−1

,

⇒ ϑλ(t0) = λ
r−p
r−1

[(
r − p
p− 1

) p−1
r−1

+

(
p− 1

r − p

) r−p
r−1

]

= λ
r−p
r−1

[
a−

p−1
r−1 + a

r−p
r−1

]
with a =

p− 1

r − p
> 0

= λ
r−p
r−1

1 + a

a
p−1
r−1

≥ λ
r−p
r−1

⇒ ϑλ(t0)→ 0 as λ→ 0+ (recall 1 < p < r).
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(We did this estimation in detail because it provides a lower estimate for the

critical parameter λ∗).

So, we can find λ0 > 0 such that

ϑλ(t0) <
1

p
for all λ ∈ (0, λ0).

Returning to (8), we see that

ϕ̂λ(u) > 0 = ϕ̂λ(0) for all ‖u‖ = ρλ = t0, all λ ∈ (0, λ0). (9)

Hypothesis H(f) (ii) implies that given any η > 0, we can find M = M(η) >

0 such that

pF (z, x)− f(z, x)x ≥ η for a.a. z ∈ Ω, all x ≥M . (10)

We have

d

dx

(
F (z, x)

xp

)
=
f(z, x)xp − pF (z, x)xp−1

x2p

=
f(z, x)x− pF (z, x)

xp+1

≤ −η
xp+1

for a.a. z ∈ Ω, all x ≥M (see (10)),

⇒ F (z, v)

vp
− F (z, x)

xp
≤ η

p

[
1

vp
− 1

xp

]
for a.a. z ∈ Ω, all M ≤ x ≤ v. (11)

Hypothesis H(f) (ii) implies that

lim
v→+∞

F (z, v)

vp
=

1

p
λ̂m uniformly for a.a. z ∈ Ω. (12)

So, if in (11) we pass to the limit as v → +∞ and use (12), then

λ̂mx
p − pF (z, x) ≤ −η for a.a. z ∈ Ω, all x ≥M .

Since η > 0 is arbitrary, we conclude that

λ̂mx
p − pF (z, x)→ −∞ as x→ +∞ uniformly for a.a. z ∈ Ω. (13)

We know that û1 ∈ intC+. So, according to Proposition 2, we can find t > 0

big enough such that

ũλ ≤ tû1.
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Then using (4), we have

ϕ̂λ(tû1) ≤ tp

p
λ̂1 −

∫
Ω

F (z, tû1)dz =
1

p

∫
Ω

[λ̂1(tû1)p − F (z, tû1)]dz

(recall that ‖û1‖p = 1),

⇒ ϕ̂λ(tû1)→ −∞ (see (13) and use Fatou’s lemma). (14)

Claim: For every λ > 0, ϕ̂λ satisfies the C-condition.

Consider a sequence {un}n∈N ⊆W 1,p
0 (Ω) such that

|ϕ̂λ(un)| ≤M1 for some M1 > 0, all n ∈ N,

(1 + ‖un‖)ϕ̂′λ(un)→ 0 in W−1,p′(Ω) as n→ +∞. (15)

From (15) we have∣∣∣∣〈A(un), h〉 −
∫

Ω

f̂λ(z, un)hdz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

for all h ∈W 1,p
0 (Ω), with εn → 0+.

(16)

In (16) we choose h = −u−n ∈W
1,p
0 (Ω). Then

‖∇u−n ‖pp +

∫
Ω

ũ−γλ u−n dz ≤ εn (see (3), (4)),

⇒ u−n → 0 in W 1,p
0 (Ω) as n→ +∞. (17)

Suppose that {u+
n }n∈N ⊆ W 1,p

0 (Ω) is not bounded. Then we may assume

that

‖u+
n ‖ → +∞.

We set yn =
u+
n

‖u+
n ‖
, n ∈ N. We have ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. We

may assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω), with y ≥ 0.

From (16) and (17), we have∣∣∣∣〈A(u+
n ), h〉 −

∫
Ω

f̂λ(z, u+
n )hdz

∣∣∣∣ ≤ ε′n‖h‖ for all h ∈W 1,p
0 (Ω), with ε′n → 0+,

⇒

∣∣∣∣∣〈A(yn), h〉 −
∫

Ω

f̂λ(z, u+
n )

‖u+
n ‖p−1

hdz

∣∣∣∣∣ ≤ ε′n‖h‖
‖u+

n ‖p−1
for all n ∈ N. (18)
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Recall that

ũ−γλ ∈ Lp
′
(Ω), (19)

while hypotheses H(f) (i), (ii) imply that

0 ≤ f(z, x) ≤ c10[1 + |x|p−1] for a.a. z ∈ Ω, all x ∈ R, some c10 > 0 (see (3)).

(20)

Then from (19) and (20) it follows that{
Nf̂λ(u+

n )

‖u+
n ‖p−1

}
n∈N

⊆ Lp
′
(Ω) is bounded.

Therefore by passing to a subsequence if necessary and using hypothesis

H(f) (ii), we have

Nf̂λ(u+
n )

‖u+
n ‖p−1

w−→ λ̂my
p−1 in Lp

′
(Ω) (21)

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 16).115

In (18) we choose h = yn − y ∈ W 1,p
0 (Ω) and pass to the limit as n→ +∞.

We obtain

lim
n→+∞

〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p
0 (Ω), hence ‖y‖ = 1, y ≥ 0 (see Proposition 1). (22)

If in (18) we pass to the limit as n→ +∞ and use (22) and (21), then

〈A(y), h〉 =

∫
Ω

λ̂my
p−1hdz for all h ∈W 1,p

0 (Ω),

⇒ −∆py(z) = λ̂my(z)p−1 for a.a. z ∈ Ω, y
∣∣
∂Ω

= 0.

Since y 6= 0 (see (22)) and m ≥ 2, it follows that y must be nodal, a

contradiction (see (22)). Therefore

{u+
n }n∈N ⊆W

1,p
0 (Ω) is bounded,

⇒ {un}n∈N ⊆W 1,p
0 (Ω) is bounded (see (17)).

So, we may assume that

un
w−→ u in W 1,p

0 (Ω) and un → u in Lp(Ω). (23)
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In (16) we choose h = (un − u) ∈ W 1,p
0 (Ω), pass to the limit as n → +∞

and use (23). Then

lim
n→+∞

〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p
0 (Ω) (see Proposition 1),

⇒ ϕ̂λ satisfies the C-condition.

This proves the Claim.

Then (9), (14) and the Claim permit the use of Theorem 1 (the mountain

pass theorem). So, for λ ∈ (0, λ0), we can find uλ ∈W 1,p
0 (Ω) such that

uλ ∈ Kϕ̂λ and uλ 6= 0.

We have

ϕ̂′λ(uλ) = 0,

⇒ 〈A(uλ), h〉 =

∫
Ω

f̂λ(z, uλ)hdz for all h ∈W 1,p
0 (Ω). (24)

In (24) we choose h = (ũλ − uλ)+ ∈W 1,p
0 (Ω). Then

〈A(uλ), (ũλ − uλ)+〉 =

∫
Ω

[λũ−γλ + f(z, uλ)](ũλ − uλ)+dz (see (4))

≥
∫

Ω

λũ−γλ (ũλ − uλ)+dz (since f ≥ 0)

= 〈A(ũλ), (ũλ − u)+〉,

⇒ 〈A(ũλ)−A(uλ), (ũλ − u)+〉 ≤ 0,

⇒ ũλ ≤ uλ.

Then from (24) and (4) it follows that

uλ ∈ Sλ ⊆ intC+ for λ ∈ (0, λ0)

⇒ (0, λ0) ⊆ L 6= ∅.

Now we prove a structural property of L, namely we show that L is an

interval.
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Proposition 4. If hypotheses H(f) hold, λ ∈ L and µ ∈ (0, λ), then µ ∈ L.120

Proof. Since λ ∈ L we can find uλ ∈ Sλ ⊆ intC+. We have

−∆puλ(z) = λuλ(z)−γ + f(z, uλ(z))

≥ µuλ(z)−γ + f(z, uλ(z)) for a.a. z ∈ Ω (since µ < λ).

We know that uλ ∈ intC+. Therefore, on account of Proposition 2, we can

find t̂ ∈ (0, 1) small such that

t̂ ũµ ≤ uλ. (25)

We have

−∆p(t̂ ũµ) = −t̂p∆pũµ = µt̂pũ−γµ ≤ µ(t̂ ũµ)−γ . (26)

We set uµ = t̂ ũµ and consider the following truncation of the reaction in

problem (Pµ)

f̂µ(z, x) =


µuµ(z)−γ + f(z, uµ(z)) if x < uµ(z),

µx−γ + f(z, x) if uµ(z) ≤ x ≤ uλ(z),

µuλ(z)−γ + f(z, uλ(z)) if uλ(z) < x,

(see (25)). (27)

This is a Carathéodory function. We set F̂µ(z, x) =
∫ x

0
f̂µ(z, s)ds and con-

sider the C1-functional ϕ̂µ : W 1,p
0 (Ω)→ R defined by

ϕ̂µ(u) =
1

p
‖∇u‖pp −

∫
Ω

F̂µ(z, u)dz for all u ∈W 1,p
0 (Ω)

(see Proposition 3 of Papageorgiou-Smyrlis [16]). From (27) it is clear that

ϕ̂µ(·) is coercive. Also, using the Sobolev embedding theorem, we see that ϕ̂µ(·)

is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli

theorem, we can find uµ ∈W 1,p
0 (Ω) such that

ϕ̂µ(uµ) = inf[ϕ̂µ(u) : u ∈W 1,p
0 (Ω)],

⇒ ϕ̂′µ(uµ) = 0,

⇒ 〈A(uµ), h〉 =

∫
Ω

f̂µ(z, uµ)hdz for all h ∈W 1,p
0 (Ω). (28)
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In (28) we choose h = (uµ − uµ)+ ∈W 1,p
0 (Ω). We have

〈A(uµ), (uµ − uµ)+〉

=

∫
Ω

[µu−γµ + f(z, uµ)](uµ − uµ)+dz (see (27))

≥
∫

Ω

µu−γµ (uµ − uµ)+dz (since f ≥ 0)

≥ 〈A(uµ), (uµ − uµ)+〉 (see (26)),

⇒ 〈A(uµ)−A(uµ), (uµ − uµ)+〉 ≤ 0,

⇒ uµ ≤ uµ (see Proposition 1). (29)

Next in (28) we choose h = (uµ − uλ)+ ∈W 1,p
0 (Ω). Then

〈A(uµ), (uµ − uλ)+〉

=

∫
Ω

[µu−γλ + f(z, uλ)](uµ − uλ)+dz (see (27))

≤
∫

Ω

[λu−γλ + f(z, uλ)](uµ − uλ)+dz (since µ < λ)

= 〈A(uλ), (uµ − uλ)+〉 (since uλ ∈ Sλ),

⇒ 〈A(uµ)−A(uλ), (uµ − uλ)+〉 ≤ 0,

⇒ uµ ≤ uλ (see Proposition 1). (30)

From (29) and (30) we infer that

uµ ∈ [uµ, uλ].

Then from (28) and (27), we have

〈A(uµ), h〉 =

∫
Ω

[µu−γµ + f(z, uµ)]hdz for all h ∈W 1,p
0 (Ω),

⇒ uµ ∈ Sµ ⊆ intC+ and so µ ∈ L.

Proposition 4 implies that L is an interval. Moreover, as a byproduct of

the above proof, we have the following corollary which establishes a kind of

monotonicity property for the solution multifunction λ→ Sλ.
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Corollary 1. If hypotheses H(f) hold, λ ∈ L, µ ∈ (0, λ) and uλ ∈ Sλ ⊆ intC+,125

then µ ∈ L and there exists uµ ∈ Sµ ⊆ intC+ such that (uλ − uµ) ∈ C+ \ {0}.

With little additional effort, we can improve this corollary.

Proposition 5. If hypotheses H(f) hold, λ ∈ L, µ ∈ (0, λ) and uλ ∈ Sλ ⊆

intC+, then µ ∈ L and there exists uµ ∈ Sµ ⊆ intC+ such that (uλ − uµ) ∈

intC+.130

Proof. From Corollary 1, we already know that µ ∈ L and there exists uµ ∈

Sµ ⊆ intC+ such that

0 ≤ uµ ≤ uλ. (31)

Let ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H(f) (iv). We

have

−∆puλ(z)− λuλ(z)−γ + ξ̂ρuλ(z)p−1

= f(z, uλ(z)) + ξ̂ρuλ(z)p−1

≥ f(z, uµ(z)) + ξ̂ρuµ(z)p−1 (see (31) and hypothesis H(f) (iv))

> f(z, uµ(z)) + ξ̂ρuµ(z)p−1 − (λ− µ)uµ(z)−γ (since λ > µ, uµ ∈ intC+)

= −∆puµ(z)− λuµ(z)−γ + ξ̂ρuµ(z)p−1 for a.a. z ∈ Ω (since uµ ∈ Sµ ⊆ intC+).

Invoking Proposition 4 of Papageorgiou-Smyrlis [16], we conclude that (uλ−

uµ) ∈ intC+.

We set λ∗ = supL.

Proposition 6. If hypotheses H(f) hold, then λ∗ < +∞.

Proof. We claim that there exists λ̂ > 0 such that

λ̂x−γ + f(z, x) ≥ λ̂1x
p−1 for a.a. z ∈ Ω, all x ≥ 0. (32)

To see this, note that hypothesis H(f) (ii) implies that we can find η > λ̂1

and M2 > 0 such that

f(z, x) ≥ ηxp−1 for a.a. z ∈ Ω, all x ≥M2. (33)
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Note that
λ

xγ
>

λ

Mγ
2

for all x ∈ (0,M2). (34)

Moreover, for λ > 0 big we will have

λ

Mγ
2

≥ ηMp−1
2 . (35)

Let λ̂ = ηMp+γ−1
2 . Then from (33), (34), (35) and since f ≥ 0, we have that135

(32) holds for this λ̂ > 0.

Let λ > λ̂ and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ intC+.

Using Proposition 2, let t > 0 be the biggest positive real such that

tû1 ≤ uλ. (36)

Let ρ = ‖uλ‖∞ and consider ξ̂ρ > 0 as postulated by hypothesis H(f) (iv).

We have

−∆p(tû1) + ξ̂p(tû1)p−1

= [λ̂1 + ξ̂ρ](tû1)p−1

≤ λ̂(tû1)−γ + f(z, tû1) + ξ̂ρ(tû1)p−1 for a.a. z ∈ Ω (see (32)),

⇒ −∆p(tû1)− λ(tû1)−γ + ξ̂ρ(tû1)p−1

< f(z, tû1) + ξ̂ρ(tû1)p−1 (since λ > λ̂)

≤ f(z, uλ) + ξ̂ρu
p−1
λ (see (36) and hypothesis H(f) (iv))

= −∆puλ − λu−γλ + ξ̂ρu
p−1
λ for a.a z ∈ Ω,

⇒ (uλ − tû1) ∈ intC+ (see Proposition 4 of Papageorgiou-Smyrlis [16]).

This contradicts the maximality of t > 0. Therefore λ 6∈ L and so λ∗ ≤ λ̂ <

+∞.

Proposition 7. If hypotheses H(f) hold and λ ∈ (0, λ∗), then problem (Pλ)

admits at least two positive solutions u0, û ∈ intC+.140

Proof. Let 0 < λ1 < λ < λ2 < λ∗. According to Proposition 5 we can find

uλ2
∈ Sλ2

⊆ intC+ and uλ1
∈ Sλ1

⊆ intC+ such that (uλ2
− uλ1

) ∈ intC+.
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We introduce the following Carathéodory function

gλ(z, x) =


λuλ1

(z)−γ + f(z, uλ1
(z)) if x < uλ1

(z),

λx−γ + f(z, x) if uλ1
(z) ≤ x ≤ uλ2

(z),

λuλ2(z)−γ + f(z, uλ2(z)) if uλ2(z) < x.

(37)

We set Gλ(z, x) =
∫ x

0
gλ(z, s)ds and consider the functional ψλ : W 1,p

0 (Ω)→

R defined by

ψλ(u) =
1

p
‖∇u‖pp −

∫
Ω

Gλ(z, u)dz for all u ∈W 1,p
0 (Ω).

Proposition 3 of Papageorgiou-Smyrlis [16] implies that ψλ ∈ C1(W 1,p
0 (Ω),R).

From (37) it is clear that ψλ(·) is coercive, while using the Sobolev embed-

ding theorem, we see that ψλ(·) is sequentially weakly lower semicontinuous.

Therefore, we can find u0 ∈W 1,p
0 (Ω) such that

ψλ(u0) = inf[ψλ(u) : u ∈W 1,p
0 (Ω)],

⇒ ψ′λ(u0) = 0,

⇒ 〈A(u0), h〉 =

∫
Ω

gλ(z, u0)hdz for all h ∈W 1,p
0 (Ω). (38)

In (38) we choose h = (uλ1 − u0)+ ∈W 1,p
0 (Ω). Then

〈A(u0), (uλ1
− u0)+〉

=

∫
Ω

[λu−γλ1
+ f(z, uλ1

)](uλ1
− u0)+dz (see (37))

= 〈A(uλ1
), (uλ1

− u0)+〉 (since uλ1
∈ Sλ1

),

⇒ 〈A(uλ1
)−A(u0), (uλ1

− u0)+〉 = 0,

⇒ uλ1 ≤ u0 (see Proposition 1).

Similarly choosing h = (u0 − uλ2
)+ ∈W 1,p

0 (Ω) in (38), we obtain

u0 ≤ uλ2
,

⇒ u0 ∈ [uλ, uλ2
]. (39)
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From (37), (38) and (39) it follows that

u0 ∈ Sλ ⊆ intC+.

Moreover, as before (see the proof of Proposition 5), using hypothesisH(f) (iv)

with ρ = ‖uλ2
‖∞ and Proposition 4 (the strong comparison principle) of Papageorgiou-

Smyrlis [16], we show that

u0 − uλ1
∈ intC+ and uλ2

− u0 ∈ intC+,

⇒ u0 ∈ intC1
0 (Ω)[uλ1

, uλ2
]. (40)

Next we consider the Carathéodory function eλ : Ω× R→ R defined by

eλ(z, x) =

λuλ1(z)−γ + f(z, uλ1(z)) if x ≤ uλ1(z),

λx−γ + f(z, x) if uλ1
(z) < x.

(41)

We set Eλ(z, x) =
∫ x

0
eλ(z, s)ds and consider the functional σλ : W 1,p

0 (Ω)→

R defined by

σλ(u) =
1

p
‖∇u‖pp −

∫
Ω

Eλ(z, u)dz for all u ∈W 1,p
0 (Ω).

We know that σλ ∈ C1(W 1,p
0 (Ω),R) (see Proposition 3 of [16]). From (37) and

(41) it is clear that

σλ
∣∣
[uλ1 ,uλ2 ]

= ψλ
∣∣
[uλ1 ,uλ2 ]

. (42)

From the first part of the proof, we know that u0 ∈ intC+ is a minimizer of

ψλ. This fact together with (40) and (42) imply that

u0 is a local C1
0 (Ω)-minimizer of σλ,

⇒ u0 is a local W 1,p
0 (Ω)-minimizer of σλ (43)

(see Giacomoni-Saoudi [8], Theorem 1.1).

Using (41), we can easily show that

Kσλ ⊆ [uλ1) ∩ intC+. (44)
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Hence, we may assume that Kσλ is finite or otherwise it is clear from (44)

and (41) that we already have an infinity of positive smooth solutions of (Pλ)

and so we are done. On account of (43), we can find ρ ∈ (0, 1) small such that

σλ(u0) < inf[σλ(u) : ‖u− u0‖ = ρ] = mρ (45)

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29).

As in the proof of Proposition 3, we show that

σλ(·) satisfies the C-condition (see the Claim in the proof of Proposition 3);

(46)

σλ(tû1)→ −∞ as t→ +∞ (see (14) in the proof of Proposition 3). (47)

Then (45), (46), (47) permit the use of Theorem 1 (the mountain pass the-

orem). So, we can find û ∈W 1,p
0 (Ω) such that

û ∈ Kσλ ⊆ [uλ1
) ∩ intC+ (see (44)) and σλ(u0) < mρ ≤ σλ(û).

Therefore û 6= u0, û ∈ intC+ is the second positive solution of (Pλ).145

Finally we examine what can be said about the critical parameter value.

Proposition 8. If hypotheses H(f) hold, then λ∗ ∈ L.

Proof. Consider a sequence {λn}n∈N ⊆ L such that λn → (λ∗)−. Let un ∈

Sλn ⊆ intC+ for all n ∈ N. We have

〈A(un), h〉 =

∫
Ω

λnu
−γ
n hdz +

∫
Ω

f(z, un)hdz for all h ∈W 1,p
0 (Ω), all n ∈ N.

(48)

We claim that {un}n∈N ⊆ W 1,p
0 (Ω) is bounded. Otherwise, we may assume

that

‖un‖ → +∞ as n→ +∞. (49)

Let yn =
un
‖un‖

, n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. So, we may

assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω), y ≥ 0. (50)
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From (48) we have

〈A(yn), h〉 =

∫
Ω

λn
u−γn
‖un‖p−1

hdz+

∫
Ω

Nf (un)

‖un‖p−1
hdz for all h ∈W 1,p

0 (Ω), all n ∈ N.

(51)

From (20) and (50) it is clear that{
Nf (un)

‖un‖p−1

}
n∈N
⊆ Lp

′
(Ω) is bounded. (52)

If in (51) we choose h = (un − u) ∈ W 1,p
0 (Ω), pass to the limit as n→ +∞

and use (49), (50), (52), then we obtain

lim
n→+∞

〈A(yn), yn − y〉 = 0,

⇒ yn → y in W 1,p
0 (Ω), hence ‖y‖ = 1, y ≥ 0 (see Proposition 1). (53)

On account of (52) and of hypothesis H(f) (ii), we may assume that

Nf (un)

‖un‖p−1

w−→ λ̂my
p−1 in Lp

′
(Ω) (54)

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 16).

Therefore, if in (51) we let n→ +∞ and use (49), (53), (54), we obtain

〈A(y), h〉 =

∫
Ω

λ̂my
p−1hdz for all h ∈W 1,p

0 (Ω),

⇒−∆py(z) = λ̂my(z)p−1 for a.a. z ∈ Ω, y
∣∣
∂Ω

= 0,

⇒ y is nodal (recall m ≥ 2), a contradiction, see (53).

Therefore, {un}n∈N ⊆W 1,p
0 (Ω) is bounded. So, we may assume that

un
w−→ u∗ in W 1,p

0 (Ω) and un → u∗ in Lp(Ω). (55)

From the proof of Proposition 7, we see that we can always have that {un}n∈N is

increasing (see (39)). Hence u∗ 6= 0. Since {Nf (un)}n∈N ⊆ Lp
′
(Ω) is bounded,

if in (48) we choose h = (un−u∗) ∈W 1,p
0 (Ω), pass to the limit as n→ +∞ and

use (55), then

lim
n→+∞

〈A(un), un − u∗〉 = 0,

⇒ un → u∗ in W 1,p
0 (Ω) (see Proposition 1).
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So, from (48) in the limit as n→ +∞, we obtain

〈A(u∗), h〉 =

∫
Ω

λ∗(u∗)−γhdz +

∫
Ω

f(z, u?)hdz for all h ∈W 1,p
0 (Ω),

⇒ u∗ ∈ Sλ∗ ⊆ intC+ and so λ∗ ∈ L.

Proposition 8 implies that L = (0, λ∗].150

Summarizing the situation for problem (Pλ), we have the following bifurcation-

type result.

Theorem 2. If hypotheses H(f) hold, then there exists λ∗ > 0 such that

(a) for all λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions u0, û ∈

intC+;155

(b) for λ = λ? problem (Pλ) has at least one positive solution u∗ ∈ intC+;

(c) for all λ > λ∗ problem (Pλ) has no positive solutions.

Remark 2. A careful reading of the proof reveals that in fact in hypothesis

H(f) (ii), it is enough to assume that

η ≥ lim sup
x→+∞

f(z, x)

xp−1
≥ lim inf

x→+∞

f(z, x)

xp−1
> λ̂1

that is, the problem need not be resonant. If resonance occurs we use the

second part of hypothesis H(f) (ii). Otherwise that condition is redundant.

To emphasize that the interesting case is the resonant one, we have decided to160

proceed with the particular formulation of H(f) (ii).
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