A Banach partial *-algebra is a locally convex partial *-algebra whose total space is a Banach space. A Banach partial *-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of these objects and display a number of examples, namely, Lp-like function spaces and spaces of operators on Hilbert scales or lattices. Finally we analyze the important cases of Banach quasi *-algebras and CQ-algebras.
Antoine, J., Trapani, C. (2019). Banach partial $*$-algebras: an overview. ADVANCES IN OPERATOR THEORY, 4(1), 71-98 [10.15352/aot.1802-1312].
Banach partial $*$-algebras: an overview
Trapani, C.
2019-01-01
Abstract
A Banach partial *-algebra is a locally convex partial *-algebra whose total space is a Banach space. A Banach partial *-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of these objects and display a number of examples, namely, Lp-like function spaces and spaces of operators on Hilbert scales or lattices. Finally we analyze the important cases of Banach quasi *-algebras and CQ-algebras.File | Dimensione | Formato | |
---|---|---|---|
Banach_pa_overview_AOT.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
309.37 kB
Formato
Adobe PDF
|
309.37 kB | Adobe PDF | Visualizza/Apri |
B_pa_AOT-_CT.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
388.89 kB
Formato
Adobe PDF
|
388.89 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.