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B - 1348 Louvain-la-Neuve, Belgium

e-mail:jean-pierre.antoine@uclouvain.be

(2) Dipartimento di Matematica ed Applicazioni, Università di Palermo, I - 90123 Palermo, Italy

e-mail:trapani@unipa.it

Abstract

A Banach partial *-algebra is a locally convex partial *-algebra whose total space is a
Banach space. A Banach partial *-algebra is said to be of type (B) if it possesses a generating
family of multiplier spaces that are also Banach spaces. We describe the basic properties of
these objects and display a number of examples, namely Lp-like function spaces and spaces of
operators on Hilbert scales or lattices.

1 Introduction

The notion of topological partial *-algebra or, more properly, of locally convex partial *-algebra
stems from the desire to exploit the simultaneous presence of the algebraic structure of a par-
tial *-algebra and its topological structure in such a way that the two match perfectly. The
resulting notion covers and unifies a variety of cases that have been discussed in the literature.
We may mention, for instance, topological quasi *-algebras and CQ*-algebras; partial *-algebras
of functions, such as the scale of the Lp spaces on [0,1] or the lattice generated by the family
{Lp(R), 1 ≤ p ≤ ∞}; or partial *-algebras of operators, such as partial O*-algebras or sets of
operators on a pip-space [6], in particular, operators on a lattice or a scale of Hilbert spaces.

In this chapter, we will review the important case of Banach partial *-algebras and, in par-
ticular, a distinguished class among them, that we call Banach partial *-algebras of type (B). In
accordance with the spirit of the theory of pip-spaces [6], the latter are characterized by the fact
that each element of a generating family of multiplier spaces is a Banach space with respect to a
topology that is compatible in a natural way with the underlying multiplication structure (Section
5). The simplest examples of this kind of locally convex partial *-algebras are the chain {Lp} and
related function spaces, and spaces of operators on a Hilbert scale or lattice.

Preliminary results on Banach partial *-algebras were already contained in the monograph [3].
Here, following mostly [4], we will go deeper and also modify some of the definitions, in the light
of the new results. In particular, the structure called here Banach partial *-algebra of type (B)
was called simply Banach partial *-algebra in [3]. We prefer to reserve the name to the larger
class of locally convex partial *-algebras for which the total space is a Banach space, and give a
new name to the more sophisticated structure.

The chapter is organized as follows. After a quick reminder of the basic definitions on partial
*-algebras (Section 2), we introduce in Section 3 the new definition of Banach partial *-algebra,
and discuss some consequences. In Section 4, the discussion of the various topologies that may
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arise on multiplier spaces leads us, in Section 5, to the new concept of Banach partial *-algebra of
type (B). The final Section 6 is devoted to examples. First, Banach partial *-algebras of functions,
which have been described at length in [2] and [3]. Then we discuss in some detail Banach partial
*-algebras of operators on a scale or a lattice of Hilbert spaces. In both cases, we show that the
corresponding Banach partial *-algebras are indeed of type (B).

2 Basic definitions on partial *-algebras

In order to keep the paper reasonably self-contained, we summarize in this Section the basic facts
on partial *-algebras and on their topological structure. Further details and proofs may be found
in [2] or in the monograph [3].

A partial *-algebra is a complex vector space A, endowed with an involution x 7→ x∗ (that is,
a bijection such that x∗∗ = x) and a partial multiplication defined by a set Γ ⊂ A× A (a binary
relation) such that:

(i) (x, y) ∈ Γ implies (y∗, x∗) ∈ Γ;
(ii) (x, y1), (x, y2) ∈ Γ implies (x, λy1 + µy2) ∈ Γ, ∀λ, µ ∈ C;
(iii) for any (x, y) ∈ Γ, there is defined a product x · y ∈ A, which is distributive w.r. to the

addition and satisfies the relation (x · y)∗ = y∗ · x∗.
We shall assume the partial *-algebra A contains a unit e, i.e., e∗ = e, (e, x) ∈ Γ, ∀x ∈ A,

and e · x = x · e = x, ∀x ∈ A. If A has no unit, it may always be embedded into a larger partial
*-algebra with unit, in the standard fashion. Notice that the partial multiplication is not required
to be associative (and often it is not).

Given the defining set Γ, spaces of multipliers are defined in the obvious way:

(x, y) ∈ Γ ⇐⇒ x ∈ L(y) or x is a left multiplier of y

⇐⇒ y ∈ R(x) or y is a right multiplier of x.

For any subset N ⊂ A, we write

LN =
⋂
x∈N

L(x), RN =
⋂
x∈N

R(x),

and, of course, the involution exchanges the two:

(LN)∗ = RN∗, (RN)∗ = LN∗.

Clearly all these multiplier spaces are vector subspaces of A, containing e.
The partial *-algebra is abelian if L(x) = R(x), ∀x ∈ A, and then x · y = y · x, ∀x ∈ L(y). In

that case, we write simply for the multiplier spaces L(x) = R(x) ≡M(x), LN = RN ≡MN, for
N ⊂ A.

The crucial fact is that the couple of maps (L,R) defines a Galois connection on the complete
lattice of all vector subspaces of A (ordered by inclusion), which means that (i) both L and R
reverse order; and (ii) both LR and RL are closures, i.e.:

N ⊂ LRN and LRL = L

N ⊂ RLN and RLR = R.

Let us denote by FL, resp. FR, the set of all LR-closed, resp. RL-closed, subspaces of A:

FL = {N ⊂ A; N = LRN},
FR = {N ⊂ A; N = RLN},
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both ordered by inclusion. Then standard results from universal algebra [11] yield the full multi-
plier structure of A:

Theorem 2.1 Let A be a partial *-algebra and FL, resp. FR, the set of all LR-closed, resp.
RL-closed, subspaces of A, both ordered by inclusion. Then

(1) FL is a complete lattice with lattice operations

M ∧N = M ∩N, M ∨N = LR(M + N).

The largest element is A, the smallest LA.
(2) FR is a complete lattice with lattice operations

M ∧N = M ∩N, M ∨N = RL(M + N).

The largest element is A, the smallest RA.
(3) Both L : FR → FL and R : FL → FR are lattice anti-isomorphisms:

L(M ∧N) = LM ∨ LN, etc.

(4) The involution N↔ N∗ is a lattice isomorphism between FL and FR. �

In addition to the two lattices FL and FR, it is useful to consider the subset FΓ ⊂ FL × FR
consisting of matching pairs, that is:

FΓ = {(N,M) ∈ FL ×FR : N = LM and M = RN}.

Indeed these pairs describe completely the partial multiplication of A, for we can write:

(x, y) ∈ Γ ⇐⇒ ∃ (N,M) ∈ FΓ such that x ∈ N, y ∈M.

The complete lattices FR,FL are often difficult to describe explicitly, but much less is needed
in practice. Indeed, the following notion is sufficient and much more manageable.

Definition 2.2 A subset IR of FR is called a generating family if
(i) RA ∈ IR and A ∈ IR.
(ii) x ∈ L(y) if and only if ∃M ∈ IR such that y ∈M, x ∈ LM.

A generating family for FL or FΓ is defined in a similar way.

Thus a generating family determines completely the partial multiplication. Clearly, if IR is
a generating family for FR, IL = LIR = {LM : M ∈ IR} is generating for FL, and similarly
IR∗ = {M∗ : M ∈ IR}, but these two have a priori nothing in common.

The following properties are obvious:

(i) if IR is generating for FR, so is the sublattice J R of FR generated from IR by finite lattice
operations.

(ii) if IR is generating, the complete lattice generated by IR is FR itself.
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3 Banach partial *-algebras

Particularizing the general definition of locally convex partial *-algebra given in [2, 3], we obtain
the following one (note this is different from Definition 6.2.7 there, we rather follow [4]).

Definition 3.1 A partial *-algebra A is said to be a normed partial *-algebra if it carries a norm
‖ · ‖ such that

(i) the involution x 7→ x∗ is isometric : ‖x‖ = ‖x∗‖, ∀x ∈ A ;

(ii) For every a ∈ LA, there exists a constant γa > 0 such that

‖ax‖ ≤ γa‖x‖, ∀x ∈ A.

A[‖ · ‖] is called a Banach partial *-algebra if, in addition,

(iii) A[‖ · ‖] is a Banach space.

Using (i), (ii) and the fact that RA = LA∗, we also have

(ii’) For every b ∈ RA, there exists a constant γb > 0 such that

‖xb‖ ≤ γb‖x‖, ∀x ∈ A.

Whereas A carries its defining norm ‖ · ‖, the universal multiplier spaces RA and LA carry
their own characteristic norms, defined as follows. To every a ∈ LA, one may associate a bounded
linear map La : A→ A by

La(x) = ax, x ∈ A.

Then we define the norm of a ∈ LA as ‖a‖�LA = ‖La‖, the latter being the usual norm on bounded
operators. Similarly, to every b ∈ RA, one associates a bounded linear map Rb : A → A and the
norm ‖b‖RA = ‖Rb‖ = ‖Lb∗‖ = ‖b∗‖�LA.

The simplest example of a Banach partial *-algebra is given by a closed subspace of a Banach
*-algebra. Let indeed A be a Banach *-algebra, with norm ‖ · ‖ and B a *-invariant subspace of
A. Then B is a partial *-algebra with the relation

Γ = {(x, y) ∈ B : xy ∈ B}.

Then, if (x, y) ∈ Γ, ‖xy‖ ≤ ‖x‖ ‖y‖. If B is closed w.r. to the norm ‖ · ‖, then B is a Banach
space and thus a Banach partial *-algebra.

Conversely, one may ask whether every Banach partial *-algebra may be embedded in a genuine
Banach *-algebra. The following proposition answers the question under some rather strong
assumptions. A proof may be found in [4].

Proposition 3.2 Let A be a Banach partial *-algebra with norm ‖ · ‖. Assume that
(i) ‖ab‖ ≤ ‖a‖ ‖b‖ whenever a ∈ L(b);
(ii) RA is ‖ · ‖-dense in A.

Then there exists a Banach *-algebra B such that A is continuously embedded in B.
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4 Topologies on multiplier spaces

From now on, A denotes a normed partial *-algebra with unit. We consider arbitrary multiplier
spaces of A and define intrinsic topologies on them, on the model of LA above. Let M ∈ FR. To
every a ∈ LM, one may associate a linear map La from M into A :

La(x) = ax, x ∈M, a ∈ LM

Then the topology ρM on M is defined as the weakest locally convex topology on M for which
all maps La, a ∈ LM, are continuous from M into A[‖ · ‖]. Thus the (projective) topology ρM is
characterized by the set of seminorms

x ∈M 7→ ‖ax‖, a ∈ LM.

It follows that ρM is finer than the topology induced on M by the norm of A (take a = e in the
seminorms above).

In the same way, the topology λN on N ∈ FL is the weakest locally convex topology on N
such that all maps Rb : x 7→ xb, b ∈ RN, are continuous from N into A[‖ · ‖]. Thus, the topology
λLM on LM is defined by the set of seminorms

a ∈ LM 7→ ‖ax‖, x ∈M.

Notice that, by Lemma 6.1.2 of [3], the topologies ρA and λA on A are both equivalent to the
original norm topology.

Consider now an arbitrary M ∈ FR and the corresponding LM ∈ FL. Apart from ρM and
λLM, other topologies can be defined on M and LM, respectively, starting from the fact that LM
may be identified with a space of linear maps from M into A. Let G be a bounded subset of
M[ρM ] and a ∈ LM. We put

‖a‖G = sup
x∈G
‖ax‖.

The family of seminorms defined in this way endows LM with a topology ΛLM finer than λLM.
Clearly, ΛLM coincides with the topology of uniform convergence on bounded sets of M[ρM ] on
the set of continuous linear maps La, a ∈ LM. One defines in a similar way a topology PM on
M. In general these topologies are neither normable, nor Fréchet.

In order to proceed, we have to study the relationship between the various topologies on a
given matching pair (M, LM). Let M ∈ FR and ‖ · ‖M a norm on M. We say that ‖ · ‖M is
admissible if

ρM � ‖ · ‖M � PM . (4.1)

The original norm ‖ · ‖ of A, the norm ‖ · ‖RA of RA, and the norm ‖ · ‖�LA of LA are clearly
admissible.

Assume now that the norm ‖·‖M on M is such that every multiplication operator La, a ∈ LM,
is continuous from M[‖ · ‖M ] into A[‖ · ‖], i.e., there exists γa > 0 such that

‖Lax‖ = ‖ax‖ ≤ γa‖x‖M , x ∈M. (4.2)

This is true, in particular, if the norm ‖ · ‖M is admissible. Then, generalizing the norm ‖ · ‖�LA

on LA, we can define a norm ‖ · ‖�LM on LM by

‖a‖�LM = sup
‖x‖M ≤1

‖ax‖. (4.3)
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Since the unit ball of M[‖ · ‖M ] is bounded in M[ρM ], it follows that ‖ · ‖�LM is admissible, in the
sense that

λLM � ‖ · ‖�LM � ΛLM. (4.4)

Moreover, it follows from the definition that

‖ax‖ ≤ ‖a‖�LM ‖x‖M , ∀ a ∈ LM, x ∈M.

In a similar way, we can define a new norm ‖ · ‖��M on M by

‖x‖��M = sup
‖a‖�LM≤1

‖ax‖. (4.5)

It is easily seen that ‖x‖��M ≤ ‖x‖M, for every x ∈M, and that ‖x‖��M is admissible. Moreover,

‖ax‖ ≤ ‖a‖�LM ‖x‖��M , ∀ a ∈ LM, x ∈M,

which is closely reminiscent of the Hölder inequality.
If ‖ · ‖��M is strictly weaker than ‖ · ‖M , then we can start the procedure again and define a

new norm ‖ · ‖���LM on LM. We expect that, exactly as for semireflexive, but nonreflexive, Banach
spaces, this procedure will never stop. First, it is easily seen that ‖ · ‖���LM ≤ ‖ · ‖�LM. But we cannot
go further, the procedure stops there.

Proposition 4.1 If ‖ · ‖M is admissible, then one has ‖ · ‖���LM = ‖ · ‖�LM.

A proof may be found in [4, Prop.4.2].
Following the pattern familiar for von Neumann algebras,1 we define a distinguished class of

norms.

Definition 4.2 An admissible norm ‖ · ‖M on M is said to be reproducing if ‖ · ‖��M is equivalent
to ‖ · ‖M . Then M[‖ · ‖M ] itself is said to be reproducing.

Clearly, if M carries a norm ‖·‖M that satisfies condition (4.2), then it also carries an admissible
and a reproducing norm, namely, ‖ · ‖��M . Moreover, a norm ‖ · ‖M can be reproducing only if it
is admissible.

As we said above, the topology ρM on the multiplier space M is in general not normable, nor
even Fréchet. However, sequential completeness of M[ρM ] has nice consequences on M[‖ · ‖M ].
Indeed one has the following result given in [4, Theor.4.7].

Theorem 4.3 Let M[ρM ] be sequentially complete and let ‖ · ‖M be an admissible norm on M.
Then the following statements are equivalent:

(i) ‖ · ‖M is reproducing;

(ii) M[‖ · ‖M ] is a Banach space;

(iii) ‖ · ‖M is the unique (up to equivalence) admissible Banach norm on M.

Remark 4.4 Note that the implication (ii) ⇒ (iii) does not rely on the assumption of sequential
completeness: if M[‖ · ‖M ] is a Banach space for an admissible norm, then M[‖ · ‖M ] has, at most,
one Banach admissible norm.

1For any set A of bounded operators containing the identity, the commutants satisfy the relations A′′′ = A′,
A ⊂ A′′; then A is a von Neumann algebra if A′′ = A.
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We have introduced in (4.1) and (4.4) several, comparable, norms on M, resp. LM. The
natural question is to ascertain when some of these norms are equivalent. The following results
are easy (a detailed proof may be found in [4, Prop. 4.9]).

Proposition 4.5 Given M ∈ FR, assume that M[‖ · ‖M ] is a Banach space. Then Pm is equiv-
alent to ‖ · ‖��M and ‖ · ‖M is admissible if and only if it is reproducing. Similarly, if LM[‖ · ‖�LM ]
is a Banach space, then ΛLM is equivalent to ‖ · ‖�LM.

Proof.
First one shows that, if M[‖ · ‖M ] is a Banach space, one has ρM � ‖ · ‖��M ∼ PM � ‖ · ‖M ,

which proves that ‖ · ‖M is admissible if and only if it is reproducing. The statement concerning
LM is proven in the same way. �

5 Banach partial *-algebras of type (B)

The preceding considerations show clearly that there is a deep analogy between partial *-algebras
and pip-spaces [6], the exchange under L or R replacing duality. For the convenience of the reader,
we have collected in the Appendix the basic facts concerning pip-spaces.

In the case of a pip-space V , we have a complete involutive lattice (V, #), with involution
Vr ↔ Vr = (Vr)

#. In addition, the whole structure can be reconstructed from a generating
involutive sublattice J of F(V,#), indexed by J , which means that

f#g ⇐⇒ there exists r ∈ J such that f ∈ Vr, g ∈ Vr . (5.1)

In the present case, we have two complete lattices FR,FL, which are exchanged under L or R,
respectively. Here too, the whole multiplication structure may be recovered from a generating
family, that is, a subset IR of FR such that x ∈ L(y) if and only if there is an element M ∈ IR
such that y ∈M, x ∈ LM.

x ∈ L(y) ⇐⇒ there exists M ∈ IR such that y ∈M, x ∈ LM . (5.2)

Now, in the case of a pip-space, an interesting (and practically sufficient) situation is obtained
when all the elements of the generating sublattice are reflexive Banach spaces or Hilbert spaces in
duality (LBS or LHS) (see the Appendix). By analogy, we are led to impose a perfect symmetry
between left and right multipliers of our Banach partial *-algebra, and thus to require that the
two spaces of a pair of matching subspaces (M, LM) be both Banach spaces for an admissible
norm. These norms are then automatically reproducing and coincide with ‖ · ‖M ∼ ‖ · ‖��M and
‖ · ‖�LM , respectively.

Our aim is to obtain a object in which the algebraic and the topological structures fit perfectly.
To that effect, it is necessary to require that the multiplier spaces M ∈ IR, where IR is a generating
family, be complete in a natural norm ‖ · ‖M , and similarly for the corresponding LM. Indeed,
these spaces are completely determined by the partial multiplication (i.e., the set Γ). If one

of them, say M, would be noncomplete, it could be embedded into its completion M̃ w.r. to
‖ · ‖M , but nothing guarantees that the latter is still contained in A, and thus there is a priori

no way of extending the partial multiplication to M̃! This is exactly the same philosophy as that
governing the construction of lattices of Hilbert spaces or, more generally, indexed pip-spaces [6]:
the elements of a generating family are always supposed to be complete, i.e., Banach or Hilbert
spaces, but no assumption is made on the global space V . Thus, on A itself, the completion
condition may be dispensed of, so that we can start both from a normed partial *-algebra and
from a Banach partial *-algebra.
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The condition that multiplier spaces be Banach has the further advantage to ensure the proper
behavior of natural embeddings. Clearly, if M1 ⊂M2 and both spaces carry their ρM topology,
then the embedding M1 →M2 is continuous. If both spaces are Banach and carry their natural
norm topology, then the embedding M1[‖ · ‖��M1

]→M2[‖ · ‖��M2
] is continuous as well. Indeed, since

M1 ⊂ M2, one has LM2 ⊂ LM1 and λM2
is finer that the topology induced on LM2 by λM1

.
Thus every λM2

-bounded subset of LM2 is λM1
-bounded, and therefore, PM1

is finer than PM2
,

which means that ‖ · ‖M2
≤ ‖ · ‖M1

, as announced.
Following again the pattern of pip-spaces, we impose the Banach condition on the elements a

generating family. Thus we introduce the following class of Banach partial *-algebras.

Definition 5.1 A normed partial *-algebra or a Banach partial *-algebra A[‖ · ‖] is said to be
of type (B) if there exists a generating family IR such that, for each pair of matching subspaces
M ∈ IR, LM ∈ IL, both spaces are Banach spaces for a reproducing norm.

Remarks 5.2 (1) A itself has a reproducing norm, namely ‖·‖��, a priori weaker that the original
norm. However, since ρA is equivalent to the original norm topology, one has always ‖ · ‖�� ∼ ‖ · ‖,
whether A is complete or not.

(2) We remind the reader that completeness of M does not imply that of LM, thus we have
to impose both explicitly.

As usual, one may consider the lattice obtained from the generating family under finite lattice
operations. In the present case, all elements of that lattice, which is, of course, generating as well,
are Banach spaces, with the norms borrowed from interpolation theory:

. M∧N = M∩N, which is a Banach space with the projective norm ‖f‖M ∧N = ‖f‖M +‖f‖N .

. M ∨N = RL(M + N) ; now M + N is a Banach space with the inductive norm ‖f‖M ∨N =
inf (‖g‖M + ‖h‖N ) , f = g + h, g ∈ M, h ∈ N, and it remains to show that it belongs to
FR, i.e. M + N = RL(M + N).

Then one can build the complete lattice FR, by applying arbitrary lattice operations, but the
additional spaces so obtained are no longer Banach spaces in general.

As mentioned in Section 3, one may obtain a Banach partial *-algebra simply by considering
a closed *-invariant subspace B of a Banach *-algebra A. We distinguish two situations.

Case 1 : Assume that B is closed w.r. to the norm ‖ · ‖. Then B is a Banach space. Let
M ∈ FR := FR(B), the multiplier lattice of B. Then, for every a ∈ LM, the map La : x ∈M 7→
ax ∈ A is continuous, hence closed. The restriction ‖ · ‖�M of the norm ‖ · ‖ to M has clearly
the property (4.2). We prove that M is closed w.r. to ‖ · ‖. Let indeed xn ∈ M = RLM, with
xn → x ∈ A. Then, for any b ∈ LM, one has xnb → xb. Since xnb ∈ B and B is closed, we get
xb ∈ B, thus x ∈ RLM = M. Therefore, each multiplier space is Banach under ‖ · ‖. This implies
that, for every M ∈ FR, ‖ · ‖��M ∼ ‖ · ‖�M , since both are Banach norms and ‖ · ‖��M � ‖ · ‖�M . So
B is a Banach partial *-algebra of type (B).

Case 2 : B is not closed w.r. to the norm ‖ · ‖, but it carries another norm ‖ · ‖B that makes
it into a Banach space. If each M ∈ FR is Banach for a norm ‖ · ‖M satisfying the condition (4.1),
then this norm is necessarily reproducing, by Theorem 4.3, taking into account that right and left
multiplications are continuous maps. Thus, in this case too, B is a Banach partial *-algebra of
type (B).
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6 Examples

In [4] and in the monograph [3], one may find a whole family of examples of Banach partial
*-algebras. We will review some of these examples here, without too much detail. In some cases,
we will show how these examples illustrate the propositions above about the equivalence of the
various topologies on multiplier spaces,

A first example of a Banach partial *-algebra is that of a CQ*-algebra, discussed in [3,
Sec.6.2.3]. This is a generalization of C*-algebras, in the sense that a CQ*-algebra can be viewed
as the completion of a C*-algebra with respect to a weaker norm.

Next we have examples of Banach partial *-algebras of functions and Banach partial *-algebras
of operators acting on a lattice of Hilbert spaces.

6.1 Partial *-algebras of functions

6.1.1 Lp spaces on a finite interval

The simplest example of an abelian partial *-algebra is the space L1([0, 1], dx), equipped with the
partial multiplication:

f ∈M(g) ⇔ ∃ q ∈ [1,∞] such that f ∈ Lq, g ∈ Lq̄, 1/q + 1/q̄ = 1. (6.1)

Thus we consider as generating family the scale of Banach spaces I = {Lp([0, 1], dx),
1 ≤ p ≤ ∞}, with Lp ⊂ Lq, p > q. The lattice completion of I, denoted F , is obtained by adding
the so-called ‘nonstandard’ spaces

Lp− =
⋂

1≤ q<p

Lq, Lp+ =
⋃

p<q≤∞
Lq.

Then, for 1 < p ≤ ∞, Lp−, with the projective topology, is a non-normable reflexive Fréchet space.
And for 1 ≤ p < ∞, Lp+, with the inductive topology, is a nonmetrizable complete DF-space
[16, 20].

We note the strict inclusions:

Lp+ ⊂ Lp ⊂ Lp− ⊂ Lq+ (1 < q < p <∞)

in which all embeddings are continuous and have dense range.
The multiplier spaces are

MLp = Lp̄, MLp− = Lp̄+, MLp+ = Lp̄−

As for topologies, take first the spaces Lp, 1 ≤ p <∞. The following result is standard [6] or [27,
Chap.15]:

‖f‖�p̄ = sup
‖g‖p≤1

∫ 1

0
|fg|dx = sup

‖g‖p≤1

∣∣∣∣∫ 1

0
fg dx

∣∣∣∣ = ‖f‖p̄ , 1 ≤ p <∞.

By the same argument, ‖f‖��p = ‖f‖p. Combining this result with Proposition 4.5, we obtain

ρLp � ‖ · ‖��p = ‖ · ‖p ∼ PLp , 1 ≤ p <∞. (6.2)

One can show [4] that every Lp, 1 < p ≤ ∞, is sequentially complete for ρLp . For p = 1, one can
prove directly that ρL1 coincides with the usual norm topology (as it should!), using the fact that
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the function f0(x) ≡ 1 belongs to L1 with ‖f0‖1 = 1. However, contrary to what is said in [2] and
in [3], the topology ρLp does not coincide with the ‖ · ‖p-norm topology for p > 1.

The ‘nonstandard’ multiplier spaces Lp± do not belong to the generating family, so we don’t
have to take them into consideration.

In conclusion, A = L1[(0, 1), dx] is an abelian Banach partial *-algebra of type (B), and it is
tight, which means that RA = L∞[(0, 1), dx] is dense in every multiplier space Lp.

6.1.2 The spaces Lp(R, dx)

We turn now to the spaces Lp(R, dx) on the whole line, discussed in full generality in [6] and also
in [4]. Hence we will be brief here. The difference with the previous case is that these no longer
form a chain, no two of them being comparable. We have only

Lp ∩ Lq ⊂ Ls, ∀ s such that p < s < q.

Hence we take the lattice generated by I = {Lp(R, dx), 1 ≤ p ≤ ∞}, that we call J .
Following [6, Sec.4.1.2], we represent the space L(p,q) by the point (1/p, 1/q) of the unit square

J = [0, 1] × [0, 1]. In this representation, the spaces Lp are on the main diagonal, intersections
Lp ∩ Lq above it and sums Lp + Lq below, the duality is [L(s]× = L(s), where s = (p, q) and
s = (p, q), that is, symmetry with respect to L2. Hence, L(p,q ⊂ L(p′,q′) if (1/p, 1/q) is on the left
and/or above (1/p′, 1/q′)., that is,

L(p,q) ⊂ L(p′,q′) ⇐⇒ (p, q) ≤ (p′, q′) ⇐⇒ p ≥ p′ and q ≤ q′. (6.3)

A figure representing the lattice J may be found, for instance, in [6, Fig.4.1] (and also on the
cover page!).

The extreme spaces of the (complete) lattice are, respectively:

VJ = LG := L1 + L∞ and V #
J = L#

G = L∞ ∩ L1,

with their inductive and projective norms, respectively, which make them into nonreflexive Banach
spaces (none of them is the dual of the other). Notice that the space LG, known as the space
of Gould [13], contains strictly all the Lp, 1 ≤ p ≤ ∞. Here too, the lattice structure allows to
give to VJ a structure of abelian Banach partial *-algebra of type (B). Notice that this partial
*-algebra does have a unit, as we have assumed in general, namely the function f0(x) ≡ 1, which
belongs to L∞, but, of course, not to any space Lp(R, dx), p <∞.

The lattice operations on J are those familiar in interpolation theory:

Lp ∧ Lq = Lp ∩ Lq, Lp ∨ Lq = Lp + Lq,

which are Banach spaces under the projective, resp. inductive, norm, as indicated in Section
5. Notice that the lattice J is already obtained at the first generation: one has, for example,
L(r,s) ∧ L(a,b) = L(r∨a,s∧b), where L(r,s) = Lr ∧ Ls, if r > s and L(r,s) = Lr ∨ Ls, if r < s. As for
the lattice completion FJ, one can build an ‘enriched’ or ‘nonstandard’ square, exactly as in the
previous section.

Now we endow VJ with the natural partial multiplication

f ∈M(g) ⇔ fg ∈ VJ, i.e., fg ∈ Ls, for some s, 1 ≤ s ≤ ∞.

Then the multipliers of the basic spaces are simple, namely, for p > q.

M(Lp ∧ Lq) = Lp̄ + L∞ ≡ L(p̄,∞), M(Lp ∨ Lq) = Lq̄ + L∞ ≡ L(q̄,∞),
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and thus

MM(Lp ∧ Lq) = Lp + L∞ ≡ L(p,∞), MM(Lp ∨ Lq) = Lq + L∞ ≡ L(q,∞).

Thus matching pairs are of the form (L(p,∞), L(p̄,∞)). Since L(q̄,∞) ⊂ L(p̄,∞) for q < p, these
multiplier spaces form a scale of Banach spaces.

Thus we may state:

Proposition 6.1 The space LG := L1(R, dx) + L∞(R, dx) is a nonreflexive LBS, generated by
the family I = {Lp(R, dx), 1 ≤ p ≤ ∞} and the corresponding compatibility (Lp)# = Lp. In
addition, LG is an abelian Banach partial *-algebra of type (B), isomorphic to the scale I =
{Lp([0, 1], dx), 1 ≤ p ≤ ∞}.

6.1.3 Amalgam spaces

The lesson of the previous example is that an involutive lattice of (preferably reflexive) Banach
spaces turns quite naturally into a (tight) Banach partial *-algebra of type (B) if it possesses a
partial multiplication that verifies a (generalized) Hölder inequality. A whole class of examples is
given by the so-called amalgam spaces [12]. The simplest ones are the spaces (Lp, `q) (sometimes
denoted W (Lp, `q)) consisting of functions on R which are locally in Lp and have `q behavior at
infinity, in the sense that the Lp norms over the intervals (n, n + 1) form an `q sequence. For
1 ≤ p, q <∞, the norm

‖f‖p,q =

{ ∞∑
n=−∞

[∫ n+1

n
|f(x)|p dx

]q/p}1/q

makes (Lp, `q) into a Banach space. The same is true for the obvious extensions to p and/or q
equal to ∞. Notice that (Lp, `p) = Lp.

These spaces obey the following (immediate) inclusion relations, with all embeddings contin-
uous:

• If q1 ≤ q2, then (Lp, `q1) ⊂ (Lp, `q2).

• If p1 ≤ p2, then (Lp2 , `q) ⊂ (Lp1 , `q).

From this it follows that the smallest space is (L∞, `1) and the largest one is (L1, `∞), and therefore

• If p ≥ q, then (Lp, `q) ⊂ Lp ∩ Lq ⊂ Ls, ∀ q < s < p.

• If p ≤ q, then (Lp, `q) ⊃ Lp ∪ Lq.

Once again, Hölder’s inequality is satisfied. Whenever f ∈ (Lp, `q) and g ∈ (Lp̄, `q̄), then fg ∈ L1

and one has
‖fg‖1 ≤ ‖f‖p,q ‖g‖p̄,q̄.

Therefore, one has the expected duality relation:

(Lp, `q)∗ = (Lp̄, `q̄), for 1 ≤ q, p <∞.

The interesting fact is that, for 1 ≤ p, q ≤ ∞, the set J of all amalgam spaces {(Lp, `q)} may be
represented by the points (p, q) of the same unit square J as in the previous example, with the
same order structure. In particular, J is a lattice with respect to the order (6.3):

(Lp, `q) ∧ (Lp
′
, `q
′
) = (Lp∨p

′
, `q∧q

′
)

(Lp, `q) ∨ (Lp
′
, `q
′
) = (Lp∧p

′
, `q∨q

′
),
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where again ∧ means intersection with projective norm and ∨ means vector sum with inductive
norm.

We turn now to the partial *-algebra structure of J . At first sight, the situation becomes
different, because, whereas L1 is a partial *-algebra, `∞ is an algebra under componentwise mul-
tiplication, (an) · (bn) = (anbn). The Lp component characterizes the local behavior. Hence,

M(Lp, `q) ⊃ (Lp̄, `∞), ∀ q,

and since the latter are totally ordered, we obtain, exactly as in the cases of the Lp spaces:

M(Lp, `q) = (Lp̄, `∞).

Thus the natural partial multiplication on J reads:

f ∈M(g) ⇔ ∃ p ∈ [1,∞] such that f ∈ (Lp, `∞) and g ∈ (Lp̄, `∞). (6.4)

The rest is as before, including the identification of the complete lattice FJ with the ‘enriched’
interval [1,∞]. Thus we may state

Proposition 6.2 The amalgam space (L1, `∞), with the partial multiplication defined by (6.4),
is a tight commutative Banach partial *-algebra of type (B), generated by the family of amalgam
spaces J = {(Lp, `q), 1 ≤ q, p ≤ ∞}. This Banach partial *-algebra is isomorphic to the one
generated by the spaces {Lp(R, dx), 1 ≤ p ≤ ∞}, described in Proposition 6.1.

6.2 Partial *-algebras of operators

6.2.1 Operators on a Hilbert scale

Let H be a Hilbert space with inner product 〈·|·〉 and S ≥ 1 a positive unbounded selfadjoint
operator, with dense domain D(S). Thus, the subspace D(S) becomes a Hilbert space, denoted
by H1, with the (graph) inner product

〈f |g〉1 = 〈Sf |Sg〉. (6.5)

Let H1 denote the conjugate dual of H1. Then H1 is itself a Hilbert space.
With this construction, we get in a canonical way a scale of Hilbert spaces

H1 ↪→ H ↪→ H1 , (6.6)

where both inclusions are continuous and have dense range.
For every α > 0, Sα is still a selfadjoint positive operator and Sα ≥ 1. So we can construct

for Sα also a scale of Hilbert spaces
Hα ↪→ H ↪→ Hα (6.7)

If α, β ∈ (0, 1), with β > α, then it turns out that

H1 ↪→ Hβ ↪→ Hα ↪→ H ↪→ Hα ↪→ Hβ ↪→ H1 . (6.8)

As for the norms, we notice that, if f ∈ H1, then

‖f‖ ≤ ‖f‖α ≤ ‖f‖β ≤ ‖f‖1, ∀α ∈ (0, 1)). (6.9)
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Let B(H1,H1) be the Banach space of bounded operators from H1 into H1 with its natural
norm ‖ · ‖1,1. In B(H1,H1) define an involution A 7→ A∗ by

< A∗f, g >= < Ag, f >, ∀ f, g ∈ H1 ,

where < ·, · > is the form that puts H1 and H1 in conjugate duality. If α, β ∈ (−1, 1) we can also
consider the Banach space B(Hα,Hβ) of bounded operators from Hα into Hβ with its natural
norm ‖ · ‖α,β.

Because of (6.8), the restriction to H1 of an operator of B(Hα,Hβ) belongs to B(H1,H1).
Therefore,

B(Hα,Hβ) ⊂ B(H1,H1), ∀α, β ∈ [−1, 1].

Moreover, B(Hα,Hβ)∗ = B(Hβ,Hα) for every α, β ∈ [−1, 1].
We define now the partial multiplication in B(H1,H1). Let X,Y ∈ B(H1,H1). We say

that X ∈ L(Y ) if there exist α, β, γ ∈ [−1, 1] such that Y ∈ B(Hα,Hβ) and X ∈ B(Hβ,Hγ).
In this case XY , the usual composition of the maps X and Y , is well-defined and belongs to
B(Hα,Hγ) ⊂ B(H1,H1). It easily seen that, if XY is well-defined, then Y ∗X∗ is also well
defined and belongs to B(Hγ ,Hα). Moreover (XY )∗ = Y ∗X∗. As a result, B(H1,H1) with this
multiplication is a partial *-algebra.

Next we have to identify the spaces of multipliers. By the definition of multiplication given
above, it follows that the family of spaces {B(Hα,Hβ)} is a generating sublattice for the lattice
of left (or even right) multipliers. An easy calculation gives the following result.

Proposition 6.3 For every α, β ∈ [−1, 1], one has LB(Hα,Hβ) = B(Hβ,H1) and RB(Hα,Hβ) =
B(H1,Hα).

Thus we get the same structure for the multiplier spaces as in the case of the Lp spaces on the
line discussed in Section 6.1.2. Indeed:

Lemma 6.4 The family IR = {B(H1,Hβ); β ∈ [−1, 1]} generates the lattice FR of right multi-
pliers. Consequently, the family LIR = {B(Hβ,H1); β ∈ [−1, 1]} generates the lattice FL of left
multipliers.

Proof. The product XY is well-defined if, and only if, there exist α, β, γ ∈ [−1, 1] such that
X ∈ B(Hβ,Hγ) and Y ∈ B(Hα,Hβ) and, in this case XY ∈ B(Hα,Hγ). Of course X may be
regarded as an element of B(Hβ,H1). On the other hand, the restriction Y(1) of Y to H1 is an
element of B(H1,Hβ). Clearly XY = XY(1). �

Now we turn to the topological structure. The topology ρB(Hα,Hβ) on B(Hα,Hβ) is defined by
the family of seminorms:

A ∈ B(Hα,Hβ) 7→ ‖(XA)�H1‖1,1, X ∈ B(Hβ,H1).

Since
‖(XA)�H1‖1,1 ≤ ‖XA‖α,1 ≤ ‖X‖β,1‖A‖α,β,

it follows that ρB(Hα,Hβ) is coarser than the topology defined by ‖ · ‖α,β. Then we can start the
procedure outlined in Section 4 to construct admissible or reproducing norms. We start with
considering a space B(H1,Hβ) with β ∈ [−1, 1], i.e., an element of IR and the corresponding set
of left multipliers LB(H1,Hβ) = B(Hβ,H1). Clearly, for X ∈ B(Hβ,H1), Y ∈ B(H1,Hβ), we
have

‖XY ‖1,1 ≤ ‖X‖β,1‖Y ‖1,β,
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which entails, in particular, that the norm ‖ · ‖1,β satisfies condition (4.2).
This implies that ‖X‖�LB(H1,Hβ) ≤ ‖X‖β,1. On the other hand, taking Y = S1−β ∈ B(H1,Hβ),

we have ‖S1−β‖1,β = 1 and ‖XS1−β‖1,1 = ‖X‖β,1. Therefore

‖X‖�LB(H1,Hβ) = sup
‖Y ‖1,β≤1

‖XY ‖1,1 > ‖X‖β,1.

Thus ‖ · ‖�LB(H1,Hβ) = ‖ · ‖β,1. One can prove in a similar way that ‖ · ‖��B(H1,Hβ) = ‖ · ‖1,β. Note,

however, that the natural norm of a space B(Hα,Hβ), with α < 1, is not reproducing, in general,
as can be shown by an easy computation.

Thus the Banach partial *-algebra B(H1,H1) has a generating family of Banach spaces, each
of them endowed with a reproducing norm. Therefore,

Proposition 6.5 The space B(H1,H1), with the structure described above, is a Banach partial
*-algebra of type (B).

Remarks 6.6 (1) As in the case of the Lp chain discussed in Section 6.1.1, one may enrich the
scale (6.8) by introducing ‘nonstandard’ spaces Hβ− ,Hβ+ (which, of course, are no longer Banach
spaces) and operators from/into them. A detailed analysis may be found in [4]. This is in fact an
application of interpolation theory, and it was explicitly developed in the context of pip-spaces by
Karwowski and one of us in [1].

(2) In fact the situation described here is perfectly general. Indeed, if H∗ ⊂ H ⊂ H∗ is any
scale of Hilbert spaces, then, by the second representation theorem for sesquilinear forms [15,
VI.2.6], there exists a selfadjoint operator S ≥ 1 such that D(S) = H∗ and 〈f |g〉∗ = 〈Sf |Sg〉 for
all f, g ∈ H∗.The same construction can be extended to an unbounded scale of Hilbert spaces.
Then, however, the full ambient space is no longer a Banach space, but an inductive limit of
Banach spaces. This suggest the extension of the partial algebraic structure to such situations as
well.

In conclusion, we emphasize that the structure just analyzed, operators on a Hilbert scale,
occurs frequently both in mathematics and in physics. Standard examples include:

. The scale of Sobolev spaces W 2
s (R), s ∈ R, where f ∈W 2

s (R) whenever its Fourier transform
f̂ satisfies the condition (1 + |.|2)s/2 f̂ ∈ L2(R). The corresponding norm reads as ‖f‖s =

‖(1 + |.|2)s/2 f̂‖, s ∈ R. Here the defining operator is (Amf)(x) = (1− d2

dx2
)1/2f(x).

. The Fourier transform of the preceding scale, corresponding to the operator (Apf)(x) =
(1 + x2)1/2f(x).

. The scale of the quantum harmonic oscillator, corresponding to the operator (Aoscf)(x) =

(1 + x2 − d2

dx2
)f(x).

(The notation is suggested by the operators of momentum, position and harmonic oscillator energy
in quantum mechanics, respectively).

6.2.2 Operators on a Lattice of Hilbert spaces

Actually a similar structure is obtained if one considers operators on a Lattice of Hilbert spaces (see
the Appendix). Indeed, take an arbitrary LHS with a distinguished family of Hilbert subspaces
VI = {Hr, r ∈ I}, for some index set I. Once again the topological and lattice structures coincide:
q < p implies Hq ⊂ Hp and the embedding is continuous with dense range. Similarly, Hp∧q and
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Hp∨q are dual to each other. Moreover, V # is dense in every Hr, r ∈ I. Thus the operators on VI

are generated by the sets of bounded operators {B(Hp,Hq), p, q ∈ I}, exactly as before. Thus here
too we get a Banach partial *-algebra of type (B). Examples of such a LHS abound, for instance:

. Köthe sequence spaces, including (weighted) `2 spaces

. The space L1
loc(X, dµ) of locally integrable functions on a measure space (X,µ). The gen-

erating sublattice consists of weighted L2 spaces.

. Locally integrable functions or sequences of prescribed growth, with a similar generating
sublattice.

. Köthe function spaces [27, Chap.15], generalizing the preceding two spaces.

. A lattice of Hilbert spaces of analytic functions around the Fock-Bargmann space.

All those LHS are described in great detail in [3, Chap.6] and [6, Chap.4]. Then, as before, the
set of operators on them become normed or Banach partial *-algebras of type (B).

7 Banach quasi *-algebras

A completely different type of partial *-algebras is that of quasi *-algebras, introduced initially
by Lassner [17, 18]. The idea was to provide a reasonable mathematical environment for properly
dealing with the thermodynamical limit of local observables of certain quantum statistical models
that did not fit into the set-up of the algebraic formulation of quantum theories developed by
Haag and Kastler [14]. A quasi *-algebra is a couple (A,Ao), where A is a vector space with
involution, Ao is a *-algebra and a vector subspace of A and A is an Ao -bimodule whose module
operations and involution extend those of Ao. The simplest way to construct such an object
consists in taking the completion of a locally convex *-algebra (Ao; τ) where the multiplication is
separately but not jointly continuous. Of particular interest is, of course, the case where τ is a
norm topology. Particularizing Definition 3.1, we define a Banach partial *-algebra as follows.

Definition 7.1 A quasi *–algebra (A,Ao) is called a Banach quasi *–algebra if A is a Banach
space under a norm ‖ · ‖ satisfying the following properties:

(i) ‖a∗‖ = ‖a‖, ∀ a ∈ A;

(ii) Ao is dense in A[‖ · ‖];

(iii) for every x ∈ Ao, the map Rx : a ∈ A[‖ · ‖]→ ax ∈ A[‖ · ‖] is continuous.

If A[‖ · ‖] is a Banach space, we say that (A,Ao) is a Banach quasi *–algebra.

The continuity of the involution implies that

(iv) for every x ∈ Ao, the map Lx : a ∈ A[‖ · ‖]→ xa ∈ A[‖ · ‖] is continuous too.

We will suppose that (A,Ao) has a unit e, i.e., an element e ∈ Ao such that ae = ea = a, for
every a ∈ A.

If (A,Ao) is a Banach quasi *–algebra, a norm topology can be defined on Ao in the following
way. For x ∈ Ao, the following functions

‖x‖L = sup
‖a‖≤1

‖ax‖ and ‖x‖R = sup
‖a‖≤1

‖xa‖, x ∈ Ao, a ∈ A, (7.1)
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are well defined norms on Ao. It is easy to see that ‖x‖L = ‖x∗‖R (and, of course, ‖x‖R = ‖x∗‖L),
for every x ∈ Ao. Moreover, by (7.1) it follows that

‖ax‖ ≤ ‖a‖‖x‖L and ‖xa‖ ≤ ‖a‖‖x‖R, ∀ a ∈ A, x ∈ Ao. (7.2)

Again by (7.1) and together with (7.2), we deduce that

‖xy‖L ≤ ‖x‖L‖y‖L and ‖xy‖R ≤ ‖x‖R‖y‖R, ∀ x, y ∈ Ao. (7.3)

Finally we put
‖x‖0 := max{‖x‖L, ‖x‖R}. (7.4)

Corollary 7.2 If the Banach quasi *–algebra (A,Ao) has a unit, then the *–algebra Ao[‖ · ‖0] is a
normed *–algebra, therefore we may suppose, without loss of generality that ‖e‖0 = 1. Moreover,

‖xy‖ ≤ ‖x‖‖y‖0, ‖yx‖ ≤ ‖x‖‖y‖0, ∀ x, y ∈ Ao and for x = e, ‖y‖ ≤ ‖e‖‖y‖0, ∀ y ∈ Ao.

Definition 7.3 A Banach quasi *–algebra (A,Ao) is called a BQ*–algebra if Ao[‖ ·‖0] is a Banach
*–algebra and a proper CQ*–algebra if Ao[‖ · ‖0] is a C*–algebra.

Example 7.4 Let I = [0, 1]. Then (Lp(I), C(I)), where C(I) denotes the C*–algebra of all
continuous functions on I and p ≥ 1, is a Banach quasi *–algebra (more precisely, a proper CQ*–
algebra [8], if C(I) is endowed with the usual supremum norm ‖ · ‖∞; actually in this case, one
has ‖ · ‖0 = ‖ · ‖∞).

Example 7.5 Let M be a von Neumann algebra and τ a normal finite faithful trace [22] on M.
Then the completion of M with respect to the norm

‖X‖p = τ(|X|p)1/p, X ∈M

is usually denoted by Lp(τ) [19, 21] and is a Banach space consisting of operators affiliated with
M. Then (Lp(τ),Jp) is a Banach quasi *–algebra with unit; more precisely, a BQ*–algebra.

An important role is played by bounded elements which are defined via the following two linear
maps from Ao into A:

x ∈ Ao → Lax = ax ∈ A

(7.5)

x ∈ Ao → Rax = xa ∈ A.

An element a ∈ A is called bounded if both La and Ra are bounded operators on Ao; i.e., if
there exists γ > 0 such that

max{‖ax‖, ‖xa‖} ≤ γ‖x‖, ∀x ∈ Ao.

The set of bounded elements is denoted by Ab and it carries the following natural norm

‖a‖b := max{‖La‖, ‖Ra‖}, a ∈ Ab,

where the norms on the rhs are those of bounded operators on A. It is clear that both La and Ra
extend to A (we denote by La, R, respectively these extensions); so that one can think of extending
the multiplication by expoiting these extensions. For instance if a, b ∈ Ab, both Lab and Rba are
well defined; but they need not be equal in general. Thus extending the multiplication is possible
only under additional assumptions. This unpleasant feature does not appear, for instance, in the
case of *-semisimple Banach quasi *-algebras. This notion is defined through the following family
of sesquilinear forms. We denote by SAo(A) the family of all sesquilinear forms ϕ ∈ A × A such
that
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(i) ϕ(a, a) ≥ 0, ∀ a ∈ A;

(ii) ϕ(ax, y) = ϕ(x, a∗y), ∀ a ∈ A, x, y ∈ Ao;

(iii) |ϕ(a, b)| ≤ ‖a‖ ‖b‖, ∀ a, b ∈ A.

Definition 7.6 A Banach quasi *-algebra (A,Ao) is said to be *-semisimple if a ∈ A and ϕ(a, a) =
0, for each ϕ ∈ SAo(A), imply that a = 0.

For instance the Banach quasi *-algebras considered in the examples 7.4 and 7.5 are shown to be
*-semisimple if, and, only if p ≥ 2. As mentioned before, for any pair a, b of bounded elements
of *-semisimple Banach quasi *-algebra (A,Ao) one has Lab = Rba. Hence the multiplication of
a, b ∈ Ab can be defined by

a • b := Lab = Rba.

Then we have

Proposition 7.7 If (A,Ao) is a *-semisimple Banach quasi *-algebra, then Ab[‖ · ‖b] is a Banach
*-algebra, with respect to the multiplication •.

The notion of bounded element plays an important role also for introducing the notion of
spectrum of an element of a Banach quasi *-algebra.

To this scope a closer analysis of the linear maps La, Ra defined in (7.5) is needed. Elements
of A \ Ao are, in general unbounded maps in the Banach space A. It is natural to deal with the
problem of inverting an element a ∈ A first by inverting La and Ra. As customary in the theory
of unbounded operators, we will look for bounded inverses.

Definition 7.8 Let (A,Ao) be a Banach quasi *-algebra with unit e. An element a ∈ A is called
closable if the linear maps

La : a ∈ Ao → xa ∈ A, Ra : a ∈ Ao → ax ∈ A

are closable in A.

If a ∈ A we denote by La the closure of La, i.e. the linear operator defined on,

D(La) = {b ∈ A : ∃{xn} ⊂ Ao, ‖b− xn‖ → 0, and {axn} is Cauchy}.

by
Lab = lim

n→∞
axn.

Similarly, Ra will denote the closure of Ra and D(Ra) its domain. The definitions are obvious
modifications of the previous ones.

Definition 7.9 Let (A,Ao) be a Banach quasi *-algebra with unit e and a ∈ A a closable element.
We say that a has a bounded inverse if there exists b ∈ Ab ∩ D(La) ∩ D(Ra), such that Rba =
Lba = e. If (A,Ao) is *-semisimple, then this element b, if any, is unique . In this case we denote
the bounded inverse of a by a−1.

For a Banach (*-)algebra, the existence of the inverse of an element a can be characterized
through the invertibility of the corresponding maps La, Ra. A similar result does not hold for a
Banach quasi *-algebra, but again the *-semisimple case is completely under control.
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Proposition 7.10 Let (A,Ao) be a *-semisimple Banach quasi *-algebra with unit e. Then every
element a ∈ A is closable and the following statements are equivalent.

(i) The element a has a bounded inverse a−1.

(ii) Both La and Ra possess everywhere defined (hence, bounded) inverses.

Let (A,Ao) be a *-semisimple Banach quasi *-algebra with unit e.

Definition 7.11 The resolvent ρ(a) of a ∈ A is the set

ρ(a) := {λ ∈ C : a− λe ∈ Sb(A)}.

The set σ(a) := C \ ρ(a) is called the spectrum of a.

Proposition 7.12 Let a ∈ A. The following statements hold:

(i) The resolvent ρ(a) is an open subset of the complex plane.

(ii) The resolvent function Rλ(a) := (a − λe)−1 ∈ Ab, λ ∈ ρ(a), is ‖ · ‖b–analytic on each
connected component of ρ(a).

(iii) For any two points λ, µ ∈ ρ(a), Rλ(a) and Rµ(a) commute and

Rλ(a)−Rµ(a) = (µ− λ)Rµ(a) •Rλ(a).

Example 7.13 Let us consider again the Banach quasi *–algebra (Lp(I), C(I)) and let f ∈ Lp(I).
Then it is easily seen that the spectrum σ(f) of f coincides with its essential range; that is the
set of all λ ∈ C such that the set

{x ∈ I : |f(x)− λ| < ε}

has positive Lebesgue measure, for every ε > 0.

Definition 7.14 Let a ∈ A. The non-negative number r(a) = sup{|λ|, λ ∈ σ(a)} is called
spectral radius of a.

Remark 7.15 Of course, if a ∈ Ab, then σ(a) is the same set as that obtained regarding it as an
element of the Banach *-algebra Ab. For an arbitrary element a ∈ A, σ(a), which is a nonempty
closed set, could be an unbounded subset of C. The next proposition shows that, if a ∈ A \ Ab,
then σ(a) is necessarily unbounded.

Proposition 7.16 Let a ∈ A. Then, r(a) <∞, if and only if, a ∈ Ab.

This section was aimed to give, quite shortly, to the reader the flavor of the behavior of
Banach quasi*-algebras. A series of other interesting results can be obtained by considering
*-representations by means of (in general, unbounded) operators. We do not enter here into
this topic referring the reader to the original papers [23] or to the forthcoming monograph [25].
Representations, as it happens for Banach algebras, give a deep insight into this structure, at
least in the case when they are sufficiently many (*-semisimple case). Also in this case bounded
elements play a crucial role: they are in fact characterized by being represented by bounded
operators under any *-representation of the given Banach quasi *-algebra.
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8 CQ*-algebras

A significant example of a Banach quasi *-algebra is a CQ*-algebra, discussed in [3, Sec.6.2.3].
This is a generalization of C*-algebras, in the sense that a CQ*-algebra can be viewed as the
completion of a C*-algebra with respect to a weaker norm.

Definition 8.1 Let (A,Ao) be a Banach quasi *-algebra with norm ‖ · ‖ and involution ∗. We
say that (A,Ao) is a proper CQ*-algebra if

(i) Ao is a C*-algebra with norm ‖ · ‖0 and involution * inherited by that of A;

(ii) Ao is dense in A with respect to the norm ‖ · ‖;

(iii) ‖x‖0 = sup
a∈A,‖a‖≤1

‖ax‖, x ∈ Ao.

We have defined the ‖ · ‖0 for a Banach quasi *-algebra (A,Ao) by (7.1) and (7.4). Condition
(iii) of Definition 8.1 is exactly equivalent to the definition given in Section 7 , due to the fact
that Ao is supposed to be a C*-algebra.

A proper CQ*–algebra can be obtained by completing of a C*–algebra Ao[‖ · ‖]0 with respect
to a weaker norm. Indeed, we have

Proposition 8.2 Let Ao be a C*–algebra, with norm ‖ · ‖0 and involution *. Let ‖ · ‖ be another
norm on Ao, weaker than ‖ · ‖0, in the sense that

‖x‖ ≤ ‖x‖0, ∀ x ∈ Ao,

and satisfying the following conditions:

(i) ‖xy‖ ≤ ‖x‖ ‖y‖0, ∀ x, y ∈ Ao;

(ii) ‖x∗‖ = ‖x‖, ∀ x ∈ Ao.

Let A denotes the ‖ · ‖-completion of Ao. Then, (A,Ao) is a proper CQ*-algebra.

For C*-algebras, as it is known, the situation is completely clear: a commutative C*-algebra
with unit is isometrically *-isomorphic to the C*-algebra C(X) of all C−valued continuous func-
tions on the compact space X of characters of C(X). The respective correspondence in this case
is the so-called Gelfand transform.

CQ*-algebras do not behave so nicely: the first reason is that Proposition 8.2 allows the
existence of non isomorphic CQ*-algebras over C(X); the second reason is that, as it is known
already for Banach *-algebras the Gelfand transform is not, in general, an isometric *-isomorphism.

However, as we shall see, any *-semisimple commutative CQ*-algebra can be thought of as a
CQ*-algebra of functions. We remind the reader that, in the case of the Lp-spaces, *-semisimplicity
occurs if, and only if, p ≥ 2.

Let X be a compact Hausdorff space and M = {µα, α ∈ I} a family of Borel measures on X,
for which there exists a constant c > 0 such that µα(X) ≤ c, for all α ∈ I. Let ‖ · ‖p,α be the norm
on Lp(X,µα). The completion LpI(X,M) of C(X) with respect to ‖ · ‖p,I , is a Banach space.

The norm ‖ · ‖p,I also satisfies the conditions of Proposition 8.2. Therefore, (LpI(X,M), C(X))
a commutative CQ*-algebra. It is clear that LpI(X,M) can be identified with a subspace of
Lp(X,µα), for all α ∈ I.
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Proposition 8.3 Let (A,Ao) be a *-semisimple commutative CQ*-algebra with identity e. Then,
there exists a family M of Borel measures on the Hausdorff compact space X of the characters of
Ao and a map Φ : a ∈ A 7→ Φ(a) ≡ â ∈ L2

I (X,M) with the following properties:

(i) Φ extends the Gelfand transform of elements of Ao and Φ(A) ⊃ C(X);

(ii) Φ is linear and injective;

(iii) Φ(ax) = Φ(a)Φ(x), ∀ a ∈ A, x ∈ Ao;

(iv) Φ(a∗) = Φ(a)∗, ∀ a ∈ A.

Thus A can be identified with a subspace of L2
I (X,M).

If A is regular, that is, if

‖a‖2 = sup
ϕ∈SAo (A)

ϕ(a, a), a ∈ A ,

then Φ is an isometric *-isomorphism of A onto L2
I (X,M).

So far we have considered proper CQ*-algebras. They can be understood as a subcase of a
richer structure where three different involutions are involved.

Definition 8.4 Let A# be a C*-algebra, with norm ‖ · ‖# and involution #. Let A[‖ · ‖] be a left
Banach module over the C*-algebra A#, with isometric involution ∗ and such that A# ⊂ A. Set
A[ = (A#)∗. We say that {A, ∗,A#,#} is a CQ*-algebra if

(i) A# is dense in A with respect to its norm ‖ · ‖ ;

(ii) Ao ≡ A# ∩ A[ is dense in A# with respect to its norm ‖ · ‖# ;

(iii) (xy)∗ = y∗x∗, ∀ x, y ∈ Ao;

(iv) ‖x‖# = sup
a∈A,‖a‖≤1

‖xa‖, x ∈ A# .

Since ∗ is isometric, it is easy to see that the space A[ itself is a C*-algebra with respect the norm
‖x‖[ := ‖x∗‖# and the involution x[ := (x∗)]∗.

Remark 8.5 It is quite clear that we can restate the previous definition starting from a C*-
algebra A[ and a right module A over A[, with A[ ⊂ A, satisfying the following properties:

(i’) A[ is dense in A with respect to its norm ‖ · ‖;

(ii’) Ao ≡ A[ ∩ A# is dense in A[ with respect to its norm ‖ · ‖[;

(iii’) (xy)∗ = y∗x∗, ∀ x, y ∈ Ao;

(iv’) ‖x‖[ = sup
a∈A,‖a‖≤1

‖ax‖, x ∈ A[ .

It is then also natural to adopt the notation {A, ∗,A[, [} for indicating a CQ*-algebra as it has
been done in many papers on this subject.

According to Definition 8.1, a proper CQ*-algebra is then a CQ*-algebra, such that A# =
A[ = Ao and the involutions *, as well as # coincide on Ao.
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Remark 8.6 If {A, ∗,A#,#} is a CQ*-algebra , then (A,Ao) is a Banach quasi *-algebra.

The main interest for the structure of CQ*-algebra comes from the Tomita-Takesaki theory.
We shortly discuss this matter.

We remind the reader that a *-algebra Ao with involution # called a left Hilbert algebra [22,
Section 10.1] if it is a dense subspace in a Hilbert space H with inner product 〈·|·〉 satisfying the
following conditions:

(i) For any x ∈ Ao the map y ∈ Ao → xy ∈ Ao is continuous;

(ii) 〈xy|z〉 = 〈y|x#z〉, ∀ x, y, z ∈ Ao;

(iii) A2
o ≡ {xy : x, y ∈ A} is total in H;

(iv) The involution x→ x# is closable in H.

By (i), for any x ∈ Ao, we denote by Lx the unique continuous linear extension to H of the
map y ∈ Ao → xy ∈ Ao; then, using (ii), it is easy to see that the map

L : x ∈ Ao → Lx ∈ B(H)

is a bounded *-representation of Ao on H. We define

L(Ao) = {Lx;x ∈ Ao}′′.

We denote by S the closure of the operator S0 defined on the dense domain A2
o by

y ∈ A2
o 7→ y# ∈ H.

Let S = J∆
1
2 be the polar decomposition of S. Then, J is an isometric involution on H and ∆ is a

non-singular positive self-adjoint operator in H, such that S = J∆
1
2 = ∆−

1
2J and S∗ = J∆−

1
2 =

∆
1
2J ; J is called the modular conjugation operator of Ao and ∆ is called the modular operator of

Ao.
We define the commutant A′o of Ao as follows: For any y ∈ D(S∗) we put Ryx = Lxy, x ∈ Ao,

and A′o = {y ∈ D(S∗) : Ry is bounded }. Then, A′o is a right Hilbert algebra (we do not give
explicitly the definition; we refer again to [22, Section 10.1]) in H with involution y → y[ := S∗y
and multiplication y1y2 ≡ Ry2y1, y1, y2 ∈ A′o. The notion of right Hilbert algebra

The commutant A′′o of A′o is defined by

A′′o = {x ∈ D(S) : y ∈ A′o → xy is continuous }.

For any x ∈ A′′o we denote by Lx the unique continuous linear operator onH, such that Lxy = Ryx,
y ∈ A′o. Then, A′′o is a left Hilbert algebra in H with involution S and multiplication x1x2 ≡ Lx1x2,
containing Ao. A left Hilbert algebra Ao is said to be full if Ao = A′′o .

The Tomita fundamental theorem states, that JL(Ao)
′′J = L(Ao)

′ and ∆itL(Ao)
′′∆−it =

L(Ao)
′′, for every t ∈ R. Let Ao be a full left Hilbert algebra in H, and

A00 ≡ {x ∈ ∩α∈CD(∆α) : ∆αx ∈ Ao, ∀ α ∈ C}.

Then, A00 is a left Hilbert subalgebra in H, such that A′′00 = Ao, JA00 = A00; {∆α : α ∈ C} is a
complex one-parameter group of automorphisms of A00, such that

(∆αx)# = ∆−αx# and (∆αx)∗ = ∆−αx∗, ∀ α ∈ C and x ∈ A00.
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The left Hilbert subalgebra A00 is called the maximal Tomita algebra of Ao.
Let now Ao be a full left Hilbert algebra with identity e and involution # in H Then, as seen

above, the commutant A′o of Ao is a full right Hilbert algebra in H with (the same) identity and
involution [. The involution in H is defined by the modular conjugation operator J . For shortness
we put H[ = A′o and H# = Ao. Consider now the system (H, J,H#,#) and define a topological
structure in it.

For y ∈ H#,
‖y‖# := ‖Ly‖ = sup

‖x‖≤1
‖Y x‖,

where L denotes the regular *-representation of Ao in B(H). We also define ‖x‖[ := ‖Jx‖#, for
every x ∈ H[.

The conditions (i) and (iv) of Definition 8.4 are obviously fulfilled, whereas condition (iii)
follows from the known equality (Jx)[ = Jx#, for every x ∈ H#. The C*-property for the norm
‖ · ‖# follows easily from the fact that the linear map y 7→ Ly is a *-representation of H# into
B(H).

The algebras of H# and H[ are complete.
To conclude that {H, J,H#,#} is a CQ*-algebra, we need to prove that H[ ∩H# is dense in H#

with respect to ‖ · ‖#. This question, in this full generality is still open. However the construction
outlined here is the starting point for building up a series of CQ*-algebras that arise in natural
way from the Tomita-Takesaki theory. The details are quite heavy and dealing here with them
goes beyond the aims of this paper. We refer the interested reader to [9] or [25].

9 Outcome

In the preceding sections, we have analyzed in detail individual Banach partial *-algebras, includ-
ing those of type (B). The next step is to consider maps from one Banach partial *-algebra into an-
other one, in particular homomorphisms or isomorphisms. These include in particular the notion of
representation, that is, a *-homomorphism from a given (Banach) partial *-algebra into the partial
*-algebra L†(D,H), the set of all (closable) linear operators X such that D(X) = D, D(X*) ⊇ D.
Here a *-homomorphism is a linear map ρ : A → B such that (i) ρ(x*) = ρ(x)* for every x ∈ A,
and (ii) whenever x ∈ L(y) in A, then ρ(x) ∈ L(ρ(y)) in B and ρ(x) ρ(y) = ρ(x y). Now, a privi-
leged role is played by the well-known GNS representation, and the latter is closely related to the
notion of biweights. In the case of Banach partial *-algebras, these objects have been analyzed in
[5] and the outcome is that being of type (B) does not bring much improvement. Therefore we
will not pursue the subject in the present review and refer the reader to the original paper [5].

Appendix - Partial inner product spaces

For the convenience of the reader, we have collected here the main features of partial inner product
spaces, keeping only what is needed for reading the paper. Further information may be found in
our monograph [6].

The general framework is that of a pip-space V , corresponding to the linear compatibility #,
that is, a symmetric binary relation f#g which preserves linearity. We call assaying subspace of
V a subspace S such that S## = S and we denote by F(V,#) the family of all assaying subspaces
of V , ordered by inclusion. The assaying subspaces are denoted by Vr, Vq, . . . and the index set is
F . By definition, q ≤ r if and only if Vq ⊆ Vr. Thus we may write

f#g ⇔ ∃ r ∈ F such that f ∈ Vr, g ∈ Vr . (1.1)
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General considerations [11] imply that the family F(V,#) := {Vr, r ∈ F}, ordered by inclusion,
is a complete involutive lattice, i.e., it is stable under the following operations, arbitrarily iterated:

. involution: Vr ↔ Vr := (Vr)
#,

. infimum: Vp∧q := Vp ∧ Vq = Vp ∩ Vq, (p, q, r ∈ F )

. supremum: Vp∨q := Vp ∨ Vq = (Vp + Vq)
##.

The smallest element of F(V,#) is V # =
⋂
r Vr and the greatest element is V =

⋃
r Vr.

By definition, the index set F is also a complete involutive lattice; for instance,

(Vp∧q)
# = Vp∧q = Vp∨q = Vp ∨ Vq.

Given a vector space V equipped with a linear compatibility #, a partial inner product on
(V, #) is a Hermitian form 〈·|·〉 defined exactly on compatible pairs of vectors. A partial inner
product space (pip-space) is a vector space V equipped with a linear compatibility and a partial
inner product.

From now on, we will assume that our pip-space (V,#, 〈·|·〉) is nondegenerate, that is, 〈f |g〉 = 0
for all f ∈ V # implies g = 0. As a consequence, (V #, V ) and every couple (Vr, Vr), r ∈ F, are
a dual pair in the sense of topological vector spaces [16]. Next we assume that every Vr carries
its Mackey topology τ(Vr, Vr), so that its conjugate dual is (Vr)

× = Vr, ∀ r ∈ F . Then, r < s
implies Vr ⊂ Vs, and the embedding operator Esr : Vr → Vs is continuous and has dense range.
In particular, V # is dense in every Vr. In the sequel, we also assume the partial inner product to
be positive definite, 〈f |f〉 > 0 whenever f 6= 0.

In fact, the whole structure can be reconstructed from a fairly small subset of F , namely, a
generating involutive sublattice J of F(V,#), indexed by J , which means that

f#g ⇔ ∃ r ∈ J such that f ∈ Vr, g ∈ Vr . (1.2)

The resulting structure is called an indexed pip-space and denoted simply by VJ := (V,J , 〈·|·〉).
For practical applications, it is essentially sufficient to restrict oneself to the case of an indexed

pip-space satisfying the following conditions:

(i) every Vr, r ∈ J , is a Hilbert space or a reflexive Banach space, so that the Mackey topology
τ(Vr, Vr) coincides with the norm topology;

(ii) there is a unique self-dual, Hilbert, assaying subspace Vo = Vo.

(iii) for every Vr ∈ J , the norm ‖ · ‖r on Vr = V ×r is the conjugate of the norm ‖ · ‖r on Vr.
In particular, the partial inner product 〈·|·〉 coincides with the inner product of Vo on the
latter.

In that case, the indexed pip-space VJ := (V,J , 〈·|·〉) is called, respectively, a lattice of Hilbert
spaces (LHS) or a lattice of Banach spaces (LBS). This implies, in addition, that, for a LHS:

(i) for every pair Vp, Vq ∈ J , the norm on Vp∧q := Vp ∩ Vq is equivalent to the projective norm,
given by

‖f‖2p∧q = ‖f‖2p + ‖f‖2q , (1.3)

(ii) for every pair Vp, Vq ∈ J , the norm on Vp∨q := Vp + Vq, the vector sum, is equivalent to the
inductive norm

‖f‖2p∨q = inf
f=g+h

(
‖g‖2p + ‖h‖2q

)
, g ∈ Vp, f ∈ Vq . (1.4)
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Similar formulas are used in the LBS case, simply omitting the squares. These norms come from
interpolation theory [10].

Note that V #, V themselves usually do not belong to the family {Vr, r ∈ J}, but they can be
recovered as

V # =
⋂
r∈J

Vr, V =
∑
r∈J

Vr.

A standard, albeit trivial, example is that of a Rigged Hilbert space (RHS) Φ ⊂ H ⊂ Φ# (it is
trivial because the lattice F contains only three elements).

Familiar concrete examples are sequence spaces, with V = ω the space of all complex sequences
x = (xn), and spaces of locally integrable functions with V = L1

loc(R, dx), the space of Lebesgue
measurable functions, integrable over compact subsets.
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