Objectives: to assess the diagnostic performance of a computer-guided decision- making software (S-Detect) in the US characterization of focal breast lesions (FBLs), according to the radiologist's experience. Materials and Methods: 300 FBLs (size: 2.6-47.2 mm; mean: 13.2 mm) in 255 patients (mean age: 51 years) were prospectively assessed in consensus according to BIRADS US lexicon by two experienced radiologists without and with S-Detect; to evaluate intra and inter-observer agreement, the same 300 FBLs were independently evaluated by two residents at baseline and after 3 months. Results: 120/300 (40%) FBLs were malignant, 2/300 (0.7%) high-risk and 178/300 (59.3%) benign. Experts review showed a not significant increase in Sensitivity, Specificity, PPV and NPV with S-Detect (97.5%, 86.5%, 83.2%, 98.1%) than without (91.8%, 81.5%, 77.2%, 93.6%) (p>0.05), as confirmed by ROC curve analysis (0.95 with and 0.92 without S-Detect [p=0.0735]). A significant higher area under the ROC curve (0.88) with S-Detect than without (0.85) was found for Resident #1 (p=0.0067) and Resident #2 (0.83 without and 0.87 with S-Detect [p=0.0302]). Intra-observer agreement (k score) improved with S-Detect from 0.69 to 0.78 for Resident #1 (p>0.05) and from 0.69 to 0.81 for Resident #2 (p>0.05). Inter-observer agreement improved with S-Detect from 0.67 to 0.7 (baseline; p>0.05) and from 0.63 to 0.77 (after 3 months; p>0.05). According to S-Detect-guided re-classification, 27/64 (42.2%) FBLs underwent a correct change in clinical management, 25/64 (39.1%) FBLs underwent no change and 12/68 (18.7%) FBLs underwent an uncorrect change. Conclusion: S-Detect can be used as an effective tool for classification of FBLs, especially for less experienced physicians.

Bartolotta, T.V., Orlando, A., Cantisani, V., Matranga, D., Ienzi, R., Cirino, A., et al. (2018). Focal breast lesion characterization according to the BI-RADS US lexicon: role of a computer-aided decision-making support. LA RADIOLOGIA MEDICA, 123, 498-506 [10.1007/s11547-018-0874-7].

Focal breast lesion characterization according to the BI-RADS US lexicon: role of a computer-aided decision-making support

Bartolotta, Tommaso Vincenzo
;
ORLANDO, Alessia Angela Maria;Matranga, Domenica;CIRINO, Alessandra;AMATO, Francesco;Di Vittorio, Maria Laura;Midiri, Massimo;Lagalla, Roberto
2018-01-01

Abstract

Objectives: to assess the diagnostic performance of a computer-guided decision- making software (S-Detect) in the US characterization of focal breast lesions (FBLs), according to the radiologist's experience. Materials and Methods: 300 FBLs (size: 2.6-47.2 mm; mean: 13.2 mm) in 255 patients (mean age: 51 years) were prospectively assessed in consensus according to BIRADS US lexicon by two experienced radiologists without and with S-Detect; to evaluate intra and inter-observer agreement, the same 300 FBLs were independently evaluated by two residents at baseline and after 3 months. Results: 120/300 (40%) FBLs were malignant, 2/300 (0.7%) high-risk and 178/300 (59.3%) benign. Experts review showed a not significant increase in Sensitivity, Specificity, PPV and NPV with S-Detect (97.5%, 86.5%, 83.2%, 98.1%) than without (91.8%, 81.5%, 77.2%, 93.6%) (p>0.05), as confirmed by ROC curve analysis (0.95 with and 0.92 without S-Detect [p=0.0735]). A significant higher area under the ROC curve (0.88) with S-Detect than without (0.85) was found for Resident #1 (p=0.0067) and Resident #2 (0.83 without and 0.87 with S-Detect [p=0.0302]). Intra-observer agreement (k score) improved with S-Detect from 0.69 to 0.78 for Resident #1 (p>0.05) and from 0.69 to 0.81 for Resident #2 (p>0.05). Inter-observer agreement improved with S-Detect from 0.67 to 0.7 (baseline; p>0.05) and from 0.63 to 0.77 (after 3 months; p>0.05). According to S-Detect-guided re-classification, 27/64 (42.2%) FBLs underwent a correct change in clinical management, 25/64 (39.1%) FBLs underwent no change and 12/68 (18.7%) FBLs underwent an uncorrect change. Conclusion: S-Detect can be used as an effective tool for classification of FBLs, especially for less experienced physicians.
2018
Settore MED/36 - Diagnostica Per Immagini E Radioterapia
Bartolotta, T.V., Orlando, A., Cantisani, V., Matranga, D., Ienzi, R., Cirino, A., et al. (2018). Focal breast lesion characterization according to the BI-RADS US lexicon: role of a computer-aided decision-making support. LA RADIOLOGIA MEDICA, 123, 498-506 [10.1007/s11547-018-0874-7].
File in questo prodotto:
File Dimensione Formato  
Bartolotta2018_Article_FocalBreastLesionCharacterizat.pdf

Solo gestori archvio

Descrizione: Articolo principale
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/325885
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact