Background: In recent years transcranial Magnetic Resonance-guided Focused Ultrasound Surgery (tcMRgFUS) treatments have been performed only using 3T units. Since following some internal analysis, planning images obtained using a 1.5T MRI’s body RF coil (as usually done with 3T systems) showed generally reasonable quality in terms of anatomy visualization and SNR but thermal images noise was above acceptable standard for treatments, a dedicated 2-channels head coil was developed (InSightec Ltd.) to ensure an adequate signal-to-noise ratio (SNR). Hence, we present the imaging protocol and the technological methods successfully used with the world-first installation of a certified tcMRgFUS system (ExAblate 4000, InSightec Ltd.) integrated with a 1.5T scanner (Signa HDxt, GE Medical Systems). Materials and Methods: We used the NEMA (2008) test methods for measuring the SNR of both MRI’s body RF coil and the dedicated coil. T2w-FRFSE images were obtained from a dedicated tcMRgFUS daily quality assurance (DQA) phantom using the same MRI protocol subsequently used for real treatments planning. Results: Compared to that achieved using MRI’s body RF coil, the dedicated coil resulted in significantly larger values of the SNR on all planes. In particular, for the axial plane, using the body RF coil we measured a SNR equal to 2.5, 5.1 and 6.0 at 1, 4 and 6 NEXs respectively whereas it was equal to 27.5, 51.5 and 67.3 when using the dedicated 2-ch head coil: therefore, an increase of more than 10 times was achieved. For the coronal and the sagittal planes, we measured a gain of about 6 and 3 times respectively. Conclusion: Even though the SNR linearly increases with magnetic field strength, it should be underlined that on a 1.5T scanner the use of a dedicated coil enabled us to obtain images with a SNR roughly 5 times larger than those acquired on 3T scanners using MRI’s body RF coil. Acknowledgements: The installation of the tcMRgFUS equipment used in this work was funded by the Italian Ministry of Education, University and Research (MIUR) within the project “Programma Operativo Nazionale 2007-3013” (PONa3_00011; Project Leader: Prof. Carlo Catalano).

C. GAGLIARDO, G.C. (2018). Trans-cranial Magnetic Resonance-guided Focused UltraSound (tcMRgFUS) system integrated with a 1.5T: an SNR study on DQA phantoms. In 6th International Symposium on Focused Ultrasounds - Reston, Virginia - USA - Abstracts book (pp. 213-213). Focused Ultrasound Foundation : Focused Ultrasound Foundation.

Trans-cranial Magnetic Resonance-guided Focused UltraSound (tcMRgFUS) system integrated with a 1.5T: an SNR study on DQA phantoms

C. GAGLIARDO;G. COLLURA;M. MARRALE;T. V. BARTOLOTTA;M MIDIRI
2018-01-01

Abstract

Background: In recent years transcranial Magnetic Resonance-guided Focused Ultrasound Surgery (tcMRgFUS) treatments have been performed only using 3T units. Since following some internal analysis, planning images obtained using a 1.5T MRI’s body RF coil (as usually done with 3T systems) showed generally reasonable quality in terms of anatomy visualization and SNR but thermal images noise was above acceptable standard for treatments, a dedicated 2-channels head coil was developed (InSightec Ltd.) to ensure an adequate signal-to-noise ratio (SNR). Hence, we present the imaging protocol and the technological methods successfully used with the world-first installation of a certified tcMRgFUS system (ExAblate 4000, InSightec Ltd.) integrated with a 1.5T scanner (Signa HDxt, GE Medical Systems). Materials and Methods: We used the NEMA (2008) test methods for measuring the SNR of both MRI’s body RF coil and the dedicated coil. T2w-FRFSE images were obtained from a dedicated tcMRgFUS daily quality assurance (DQA) phantom using the same MRI protocol subsequently used for real treatments planning. Results: Compared to that achieved using MRI’s body RF coil, the dedicated coil resulted in significantly larger values of the SNR on all planes. In particular, for the axial plane, using the body RF coil we measured a SNR equal to 2.5, 5.1 and 6.0 at 1, 4 and 6 NEXs respectively whereas it was equal to 27.5, 51.5 and 67.3 when using the dedicated 2-ch head coil: therefore, an increase of more than 10 times was achieved. For the coronal and the sagittal planes, we measured a gain of about 6 and 3 times respectively. Conclusion: Even though the SNR linearly increases with magnetic field strength, it should be underlined that on a 1.5T scanner the use of a dedicated coil enabled us to obtain images with a SNR roughly 5 times larger than those acquired on 3T scanners using MRI’s body RF coil. Acknowledgements: The installation of the tcMRgFUS equipment used in this work was funded by the Italian Ministry of Education, University and Research (MIUR) within the project “Programma Operativo Nazionale 2007-3013” (PONa3_00011; Project Leader: Prof. Carlo Catalano).
2018
C. GAGLIARDO, G.C. (2018). Trans-cranial Magnetic Resonance-guided Focused UltraSound (tcMRgFUS) system integrated with a 1.5T: an SNR study on DQA phantoms. In 6th International Symposium on Focused Ultrasounds - Reston, Virginia - USA - Abstracts book (pp. 213-213). Focused Ultrasound Foundation : Focused Ultrasound Foundation.
File in questo prodotto:
File Dimensione Formato  
ECR2018_C-0012.pdf

Solo gestori archvio

Dimensione 940.85 kB
Formato Adobe PDF
940.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
FUSF_Symp2018_AbstractBook_web_FINAL_Trancranial.pdf

accesso aperto

Descrizione: Frantespizio, Sommarrio, pdf del poster, comitato scientifico
Tipologia: Versione Editoriale
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/303927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact