The X-ray Integral Field Unit (X-IFU) is a next generation microcalorimeter planned for launch onboard the Athena observatory. Operating a matrix of 3840 superconducting Transition Edge Sensors at 90 mK, it will provide unprecedented spectro-imaging capabilities (2.5 eV resolution, for a field of view of 5') in the soft X-ray band (0.2 up to 12 keV), enabling breakthrough science. The definition of the instrument evolved along the phase A study and we present here an overview of its predicted performances and their modeling, illustrating how the design of the X-IFU meets its top-level scientific requirements. This article notably covers the energy resolution, count-rate capability, quantum efficiency and non X-ray background levels, highlighting their main drivers.
Peille, P., den Hartog, R., Macculi, C., Barbera, M., Lotti, S., Cucchetti, E., et al. (2018). The performance of the ATHENA X-ray Integral Field Unit. In Proceedings of SPIE - The International Society for Optical Engineering (pp. 161). SPIE [10.1117/12.2313720].
The performance of the ATHENA X-ray Integral Field Unit
Barbera, Marco;
2018-07-06
Abstract
The X-ray Integral Field Unit (X-IFU) is a next generation microcalorimeter planned for launch onboard the Athena observatory. Operating a matrix of 3840 superconducting Transition Edge Sensors at 90 mK, it will provide unprecedented spectro-imaging capabilities (2.5 eV resolution, for a field of view of 5') in the soft X-ray band (0.2 up to 12 keV), enabling breakthrough science. The definition of the instrument evolved along the phase A study and we present here an overview of its predicted performances and their modeling, illustrating how the design of the X-IFU meets its top-level scientific requirements. This article notably covers the energy resolution, count-rate capability, quantum efficiency and non X-ray background levels, highlighting their main drivers.File | Dimensione | Formato | |
---|---|---|---|
106994K.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
2.79 MB
Formato
Adobe PDF
|
2.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.