Humans communicate their affective states through different media, both verbal and non-verbal, often used at the same time. The knowledge of the emotional state plays a key role to provide personalized and context-related information and services. This is the main reason why several algorithms have been proposed in the last few years for the automatic emotion recognition. In this work we exploit the correlation between one's affective state and the simultaneous body expressions in terms of speech and gestures. Here we propose a system for real-time emotion recognition from gestures. In a first step, the system builds a trusted dataset of association pairs (motion data → emotion pattern), also based on textual information. Such dataset is the ground truth for a further step, where emotion patterns can be extracted from new unclassified gestures. Experimental results demonstrate a good recognition accuracy and real-time capabilities of the proposed system.

Milazzo, F.a.A. (2017). Exploiting Correlation Between Body Gestures and Spoken Sentences for Real-time Emotion Recognition. In Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter. ACM [10.1145/3125571.3125590].

Exploiting Correlation Between Body Gestures and Spoken Sentences for Real-time Emotion Recognition

Augello, Agnese;Pilato, Giovanni;Gentile, Vito;Gentile, Antonio;Sorce, Salvatore
2017-09-01

Abstract

Humans communicate their affective states through different media, both verbal and non-verbal, often used at the same time. The knowledge of the emotional state plays a key role to provide personalized and context-related information and services. This is the main reason why several algorithms have been proposed in the last few years for the automatic emotion recognition. In this work we exploit the correlation between one's affective state and the simultaneous body expressions in terms of speech and gestures. Here we propose a system for real-time emotion recognition from gestures. In a first step, the system builds a trusted dataset of association pairs (motion data → emotion pattern), also based on textual information. Such dataset is the ground truth for a further step, where emotion patterns can be extracted from new unclassified gestures. Experimental results demonstrate a good recognition accuracy and real-time capabilities of the proposed system.
set-2017
978-1-4503-5237-6
Milazzo, F.a.A. (2017). Exploiting Correlation Between Body Gestures and Spoken Sentences for Real-time Emotion Recognition. In Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter. ACM [10.1145/3125571.3125590].
File in questo prodotto:
File Dimensione Formato  
a4-milazzo.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
frontmatter.pdf

accesso aperto

Descrizione: Cover + Front Matter
Tipologia: Versione Editoriale
Dimensione 294.54 kB
Formato Adobe PDF
294.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/298739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact