Actual evapotranspiration is assessed via surface energy balance at an hourly rate. However, a robust estimation of daily evapotranspiration from hourly values is required. Outcomes of surface energy balance are frequently determined via measures of eddy covariance latent heat flux. Surface energy balance can be applied on images acquired at different times and spatial resolutions. In addition, hourly actual evapotranspiration needs to be integrated at a daily rate for operational uses. Questions arise whether the validation of surface energy balance models can benefit from complementary in situ measures of latent heat flux and sap flow transpiration. Here, validation was driven by image acquisition time, spatial resolution, and temporal integration. Thermal and optical images were collected with a proximity-sensing platform on an olive orchard at different acquisition times. Actual latent heat fluxes from canopy and sap flux at tree trunks were measured with a flux tower and heat dissipation probes. The latent heat fluxes were then further analyzed. A surface energy balance was applied over proximity sensing images re-sampled at different spatial resolutions with resulting latent heat fluxes compared to in situ ones. A time lag was observed and quantified between actual latent heat fluxes from canopy and sap flux at the tree trunk. Results also indicate that a pixel resolution comparable to the average canopy size was suitable for estimating the actual evapotranspiration via a single source surface energy balance model. Images should not be acquired at the beginning or the end of the diurnal period. Findings imply that sap flow transpiration can be used to measure surface energy balance at a daily rate or when images are found at an hourly rate near noon, and the existing time lag between the latent heat flux at the canopy and the sap flow at the trunk does not need to be taken into account.

Maltese, A., Awada, H., Capodici, F., Ciraolo, G., Loggia, G.L., Rallo, G. (2018). On the use of the eddy covariance latent heat flux and sap flow transpiration for the validation of a surface energy balance model. REMOTE SENSING, 10(2), 1-17 [10.3390/rs10020195].

On the use of the eddy covariance latent heat flux and sap flow transpiration for the validation of a surface energy balance model

Maltese, Antonino;Awada, Hassan;Capodici, Fulvio;Ciraolo, Giuseppe;Loggia, Goffredo La;
2018-01-01

Abstract

Actual evapotranspiration is assessed via surface energy balance at an hourly rate. However, a robust estimation of daily evapotranspiration from hourly values is required. Outcomes of surface energy balance are frequently determined via measures of eddy covariance latent heat flux. Surface energy balance can be applied on images acquired at different times and spatial resolutions. In addition, hourly actual evapotranspiration needs to be integrated at a daily rate for operational uses. Questions arise whether the validation of surface energy balance models can benefit from complementary in situ measures of latent heat flux and sap flow transpiration. Here, validation was driven by image acquisition time, spatial resolution, and temporal integration. Thermal and optical images were collected with a proximity-sensing platform on an olive orchard at different acquisition times. Actual latent heat fluxes from canopy and sap flux at tree trunks were measured with a flux tower and heat dissipation probes. The latent heat fluxes were then further analyzed. A surface energy balance was applied over proximity sensing images re-sampled at different spatial resolutions with resulting latent heat fluxes compared to in situ ones. A time lag was observed and quantified between actual latent heat fluxes from canopy and sap flux at the tree trunk. Results also indicate that a pixel resolution comparable to the average canopy size was suitable for estimating the actual evapotranspiration via a single source surface energy balance model. Images should not be acquired at the beginning or the end of the diurnal period. Findings imply that sap flow transpiration can be used to measure surface energy balance at a daily rate or when images are found at an hourly rate near noon, and the existing time lag between the latent heat flux at the canopy and the sap flow at the trunk does not need to be taken into account.
2018
Settore ICAR/02 - Costruzioni Idrauliche E Marittime E Idrologia
Settore ICAR/06 - Topografia E Cartografia
Settore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestali
Maltese, A., Awada, H., Capodici, F., Ciraolo, G., Loggia, G.L., Rallo, G. (2018). On the use of the eddy covariance latent heat flux and sap flow transpiration for the validation of a surface energy balance model. REMOTE SENSING, 10(2), 1-17 [10.3390/rs10020195].
File in questo prodotto:
File Dimensione Formato  
remotesensing-10-00195_Maltese_et_al_2018.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 2.85 MB
Formato Adobe PDF
2.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/281535
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact