growth process and vegetative development have a direct consequence on the conservation of cultural assets. Recently, due to the use of many chemical compounds applied in biodeteriogens growth control, the attention has been focused on the risks resulting from these treatments that may affect human health (operators, visitors) and the environment. In order to develop alternative methods to traditional biocides, several studies have been focused to various natural products with potential antimicrobial activity, particularly against fungi and bacteria associated with the biodeterioration of cultural assets (Borrego et al., 2012; Sakr et al., 2012; Guiamet et al., 2008). In this study, antimicrobial activity of three different plant products, Tea tree oil (essential oil), Nepeta nepetella L. and Allium sativum L. extracts has been evaluated against bacteria and fungi, previously isolated from colonized manufacts and identified by microscopy and molecular biology investigations (Palla, 2012), using three different in vitro antimicrobial assays in order to develop the most appropriate method: micro- dilution in microtiter plates, well-plates diffusion and Agar-diffusion disk method (Stupar et al., 2014; Ghalem and Mohamed, 2008). Bioassays show a different susceptibility to the tested plant extracts, establishing for each bacteria and fungi the Minimum Inhibitory Concentration (MIC) and defining the diameter of the growth inhibition area. Among these three methods, the most simple and quick has been Agar- diffusion disk method, based on the methodology used by Kirby-Bauer. Therefore, this result supports the data reported in literature and shows an important potential implication for the possible use in the control of biodeterioration of cultural heritage, respecting of the human health and the environment (Sasso et al., 2013; Guiamet et al., 2008).

Rotolo, V., Giovanna, B., Enza Di Carlo, ., Maurizio, B., Costa, E., Palla, F. (2016). Plant extracts to control microbial growth: a “green” potential strategy. In IX CONGRESSO NAZIONALE DI ARCHEOMETRIA - RACCOLTA ABSTRACT (pp. 68). Cosenza : Università della Calabria.

Plant extracts to control microbial growth: a “green” potential strategy

Giovanna Barresi
Investigation
;
Enza Di Carlo
Investigation
;
Maurizio Bruno
Membro del Collaboration Group
;
F. Palla
Conceptualization
2016-01-01

Abstract

growth process and vegetative development have a direct consequence on the conservation of cultural assets. Recently, due to the use of many chemical compounds applied in biodeteriogens growth control, the attention has been focused on the risks resulting from these treatments that may affect human health (operators, visitors) and the environment. In order to develop alternative methods to traditional biocides, several studies have been focused to various natural products with potential antimicrobial activity, particularly against fungi and bacteria associated with the biodeterioration of cultural assets (Borrego et al., 2012; Sakr et al., 2012; Guiamet et al., 2008). In this study, antimicrobial activity of three different plant products, Tea tree oil (essential oil), Nepeta nepetella L. and Allium sativum L. extracts has been evaluated against bacteria and fungi, previously isolated from colonized manufacts and identified by microscopy and molecular biology investigations (Palla, 2012), using three different in vitro antimicrobial assays in order to develop the most appropriate method: micro- dilution in microtiter plates, well-plates diffusion and Agar-diffusion disk method (Stupar et al., 2014; Ghalem and Mohamed, 2008). Bioassays show a different susceptibility to the tested plant extracts, establishing for each bacteria and fungi the Minimum Inhibitory Concentration (MIC) and defining the diameter of the growth inhibition area. Among these three methods, the most simple and quick has been Agar- diffusion disk method, based on the methodology used by Kirby-Bauer. Therefore, this result supports the data reported in literature and shows an important potential implication for the possible use in the control of biodeterioration of cultural heritage, respecting of the human health and the environment (Sasso et al., 2013; Guiamet et al., 2008).
2016
Essential oil, Antimicrobial molecules, Minimum Inhibitory Concentration
Rotolo, V., Giovanna, B., Enza Di Carlo, ., Maurizio, B., Costa, E., Palla, F. (2016). Plant extracts to control microbial growth: a “green” potential strategy. In IX CONGRESSO NAZIONALE DI ARCHEOMETRIA - RACCOLTA ABSTRACT (pp. 68). Cosenza : Università della Calabria.
File in questo prodotto:
File Dimensione Formato  
Contributi_AIAr_2016.pdf

Solo gestori archvio

Descrizione: Ricerca scientifica originale
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/249658
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact