The identification of individuals’ breed of origin has several practical applications in livestock and is useful in different biological contexts such as conservation genetics, breeding and authentication of animal products. In this paper, penalized multinomial regression was applied to identify the minimum number of single nucleotide polymorphisms (SNPs) from high-throughput genotyping data for individual assignment to dairy sheep breeds reared in Sicily. The combined use of penalized multinomial regression and stability selection reduced the number of SNPs required to 48. A final validation step on an independent population was carried out obtaining 100% correctly classified individuals. The results using independent analysis, such as admixture, Fst, principal component analysis and random forest, confirmed the ability of these methods in selecting distinctive markers. The identified SNPs may constitute a starting point for the development of a SNP based identification test as a tool for breed assignment and traceability of animal products.

Sottile, G., Sardina, M., Mastrangelo, S., DI GERLANDO, R., Tolone, M., Chiodi, M., et al. (2018). Penalized classification for optimal statistical selection of markers from high-throughput genotyping: application in sheep breeds. ANIMAL, 12(6), 1118-1125 [10.1017/S175173111700266X].

Penalized classification for optimal statistical selection of markers from high-throughput genotyping: application in sheep breeds

Sottile, Gianluca
Conceptualization
;
Sardina, Maria Teresa
Conceptualization
;
Mastrangelo, Salvatore
Methodology
;
Di Gerlando, Rosalia
Formal Analysis
;
Tolone, Marco
Methodology
;
Chiodi, Marcello
Conceptualization
;
Portolano, Baldassare
Funding Acquisition
2018-01-01

Abstract

The identification of individuals’ breed of origin has several practical applications in livestock and is useful in different biological contexts such as conservation genetics, breeding and authentication of animal products. In this paper, penalized multinomial regression was applied to identify the minimum number of single nucleotide polymorphisms (SNPs) from high-throughput genotyping data for individual assignment to dairy sheep breeds reared in Sicily. The combined use of penalized multinomial regression and stability selection reduced the number of SNPs required to 48. A final validation step on an independent population was carried out obtaining 100% correctly classified individuals. The results using independent analysis, such as admixture, Fst, principal component analysis and random forest, confirmed the ability of these methods in selecting distinctive markers. The identified SNPs may constitute a starting point for the development of a SNP based identification test as a tool for breed assignment and traceability of animal products.
2018
Sottile, G., Sardina, M., Mastrangelo, S., DI GERLANDO, R., Tolone, M., Chiodi, M., et al. (2018). Penalized classification for optimal statistical selection of markers from high-throughput genotyping: application in sheep breeds. ANIMAL, 12(6), 1118-1125 [10.1017/S175173111700266X].
File in questo prodotto:
File Dimensione Formato  
Penalized classification for optimal statistical selection of markers from high-throughput genotyping-cm.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 4.16 MB
Formato Adobe PDF
4.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/243784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact