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The identification of individuals’ breed of origin has several practical applications in livestock and is useful in different biological
contexts such as conservation genetics, breeding and authentication of animal products. In this paper, penalized multinomial
regression was applied to identify the minimum number of single nucleotide polymorphisms (SNPs) from high-throughput
genotyping data for individual assignment to dairy sheep breeds reared in Sicily. The combined use of penalized multinomial
regression and stability selection reduced the number of SNPs required to 48. A final validation step on an independent population
was carried out obtaining 100% correctly classified individuals. The results using independent analysis, such as admixture,

F.., principal component analysis and random forest, confirmed the ability of these methods in selecting distinctive markers.

The identified SNPs may constitute a starting point for the development of a SNP based identification test as a tool for breed

assignment and traceability of animal products.
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Implications

The identification of individuals’ breed/population of origin
offers unbiased tools in livestock and is useful in different
biological contexts, such as management of livestock genetic
resources for breed confirmation and estimation of hybridi-
zation level, and authentication of typical products. The
identified single nucleotide polymorphisms (SNPs) may con-
stitute a starting point for the development of a SNP based
identification test as a tool for breed assignment and trace-
ability of animal products.

Introduction

Assignment tests using genetic information to establish
population membership of individuals provide the most
direct methods to determine population of origin of unknown
individuals (Negrini et al,, 2009). The identification of indi-
viduals" breed/population of origin offers has several prac-
tical applications in livestock and is useful in different
biological contexts, such as management of livestock genetic
resources for breed confirmation, estimation of hybridization
level and authentication of brand products that are produced
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using only a few particular breeds or populations (Wilkinson
et al., 2011; Bertolini et al,, 2015). Moreover, assignment of
individuals to a specific breed is very important both for
biodiversity purposes and products traceability, especially
when the phenotypic differentiation among breeds is difficult
(Tolone et al., 2012).

Recently developed genomic technologies, such as
medium and high-density SNP arrays, are important tools
that can be used for these purposes. Dense genome-wide
data is valuable but is relatively costly and time-consuming
or computationally expensive to analyse. However, some
methods are tractable and capable to efficiently predict
breed composition using breed frequencies of thousands of
markers (Kuehn et af., 2011). Therefore, it is often desirable
to reduce the number of markers according to their infor-
mation content, in order to create reduced panels for popu-
lation genetic analysis (Paschou et al, 2007). Many
clustering algorithms have been developed employing
population genetic data to assign individuals to clusters
(Jakobsson and Rosenberg, 2007). Several statistical
methods were used to determine which genetic markers
contain the most information to discriminate among popu-
lations (Rosenberg, 2005; Wilkinson et al,, 2011), such as the
combined approach of principal component analysis (PCA)



and random forest (RF) (Bertolini et al, 2015), multivariate
canonical discriminant analysis (Dimauro et al., 2013), the
statistic delta (Shriver et al, 1997), and Wright's Fg
(Bowcock et al, 1994). While all these methodologies
yielded reduced marker panels useful for breed identification,
the power of assignment varied among analysis methods.

In the present study, starting from available high-
throughput SNP data, penalized multinomial regression
(PMR) and stability selection (SS) were applied to identify the
optimal set of informative SNPs useful to discriminate among
five Sicilian dairy sheep breeds.

Material and methods

Data

A total of 236 animals, randomly collected from several
farms in different areas of Sicily, were used for the analysis.
Samples consisted of 30 Barbaresca (Bar), 51 Comisana
(Com), 77 Pinzirita (Pin), 30 Sarda (Sar) and 48 Valle del
Belice (VdB) individuals. The procedures involving animal
samples collection followed the recommendation of Directive
2010/63/EU. All animals were genotyped for 54241 SNPs
using the lllumina OvineSNP50K Genotyping BeadChip.
Genotyping was performed by Dipartimento Scienze Agrarie e
Forestali, University of Palermo. Input data were genotyping
data of 54 241 SNPs, that is GType data in lllumina AB format
exported from GenomeStudio v1.0 (lllumina Inc., San Diego,
CA). We excluded all SNPs not assigned to chromosome (OAR)
or assigned to X and Y chromosomes. Markers were filtered
according to the following quality criteria: (i) call frequency
(=95%), (ii) minor allele frequency (MAF > 0.01). SNPs that did
not satisfy these quality criteria were excluded. A total of
48 068 SNPs were retained for subsequent analyses.

We transformed the genotyping data to numeric values,
without any loss of information, in order to apply PMR. The
initial data table X consisted of N rows, one per animal, and
p columns, one per SNP. Each entry of X, AA, AB and BB, was
scored as —1, 0, 1, or empty. SNPs with missing genotypes
were randomly imputed within each breed according to the
corresponding genotype frequency.

Statistical analysis of single nucleotide polymorphisms and
variable reduction

Each sheep breed was divided into a test population and a
validation population. The validation population, generated
by randomly sampling 15% of animals within each breed,
was used for the final validation procedure of breed assign-
ment. The test population consisted of the remaining
animals.

Suppose to have a set of N individuals and p SNPs, with
p»N, divided in K groups, the main goal in a high-dimensional
setting was the selection of a limited number of SNPs with a
high discrimination power among groups. To achieve this aim
some authors proposed the LASSO method (Tibshirani, 1996)
or Ly-penalty, a shrinkage and selection method for linear
regression. In statistics, least absolute shrinkage and selection
operator (LASSQ) is a regression analysis method that performs
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both variable selection and regularization in order to enhance
the prediction accuracy and interpretability of the statistical
model it produces. LASSO is able to achieve these goals
by forcing the sum of the absolute value of the regression
coefficients to be less than a fixed value, which forces
certain coefficients to be set to zero. LASSO was originally
introduced in the context of least squares. Consider a
sample consisting of N observations, each of which consists
of p covariates and a single outcome. Let y; be the outcome and
xi=(X1, X, ... ,xp)T be the covariate vector for the
ith observation. Than the objective of the LASSO is to solve
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where tis a prespecified free parameter that determines the
amount of regularization, f, is the intercept of the model
and g is the p-variate vector of regression coefficients. Letting
X be the covariate matrix, so that X;=(x;); and x] is the ith
row of X we can write this in the so-called Lagrangian form
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where the relationship between tand Ais t~A =, that is tis
approximately the multiplicative inverse of A. The L; norm of
B is a constraint on the regression coefficients that strictly
depends on the tuning parameter A.

LASSO regression originally defined for least squares, is
easily extended to a wide variety of statistical models
including generalized linear models. In our framework, given
the nature of the outcome y, that is a categorical variable
with K> 2 levels, we used a penalized multinomial regres-
sion. Here, we model the probability to belong to breed
k given the SNPs’ matrix X of dimension N x p
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Let the outcome y be the Nx K indicator response matrix,
with elements y;=I(y;=/),I=1, ... ,Kandi=1, ... ,N.
Then the regression coefficients are obtained as the solution
of the following optimization problem
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where fis a px K matrix coefficients, g refers to the k-th
column (for outcome breed k), and ; the j-th row (vector of K
coefficients for variable j).

In this step, as usual for the supervised classification
approach y, that is the true vector of labels of breeds, is set as
response variable.
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All the following analysis was computed using g/mnet
package (Friedman et al, 2010) of the R software 3.3.0
(R Core Team, 2016).

The stability selection method (Meinshausen and
BiihImann, 2010) was used to discover the best subset of
variables $***® that will have nonzero weight in the model.
Let's assume that we have a generic structure estimation
algorithm (i.e. the LASSO) that takes a data set X and a reg-
ularization parameter 2, it retums a selection set 5*. The j-th
covariate belongs to 5* if the regression coefficient p;#0.

The SS algorithm then runs as follows:

1. Define a candidate set of dimension m of reqularization
parameters A={4;, ... ,Am} and a number n of
subsample.

2. For each value of A€ A, do:

a. Start with the full data set X
b. Foreach i=1, ...,ndo:

i. Subsample from X without replacement to generate
a smaller data set of size /2, namely Z;.

ii. Run the selection algorithm on dataset Z; with
parameter A to obtain a selection setS?.

¢. Given the n selection sets from each subsample,
calculate the empirical selection probability for each
covariate:

n

A . A 1 . A .
Hj =P{J’€Si} = E;’{fesi}ij=17 Y
The selection probability for covariate jis its probability
of being selected by the algorithm.

3. Given the selection probabilities for each covariate and
for each value of A A, construct the stable set
according to the following definition:

Sstable — {J‘ ';“g{‘ HJ_A Zﬂ'thr}

where y, is a predefined threshold.

In our study, fixing a sequence of 100 values of 2, step 2.
(b) was repeated B times by randomly splitting, within each
breed, the test population. After calculating the empirical
selection probability for each SNP and fixing the threshold
value, a final set S of p, SNPs was selected. For this
reduced panel, a new multinomial regression model was
then fitted. To assess the classification performance of this
set of py SNPs we tested the discrimination rule using the
validation population which is considered to be an inde-
pendent subset of samples.

Other statistical and genetic methods

To better understand the potential of our strategy and the
strength of a reduced panel of SNPs we decided to use the
k-means approach, which is an unsupervised technique. In
particular, we used all the principal components up to 70%

1120

of explained variance of the model matrix X. We applied this
technique once to the whole set of SNPs and once to the
reduced set p;.

The efficiency of the selected markers to cluster individuals
was also tested using model-based clustering algorithm
implemented in the admixture software 1.3.0 (Alexander and
Lange, 2011) which used unsupervised classification approa-
ches and Genepop software 4.1.4 (Rousset, 2008) to calculate
F. The most probable number of populations in the data set (K)
was estimated using the default (fivefold) admixture’s cross-
validation procedure, by which estimated prediction errors are
obtained, for each K value, by adopting a kind of ‘leave-one-
out" approach through which an estimation of prediction errors
can be assumed to be the most suitable one. Genepop was also
used to estimate population relatedness using pairwise esti-
mates of F; among breeds. The reduced panel was analysed
using SNPchiMp (Nicolazzi et al,, 2015) to obtain information
on the genomic distribution of SNPs.

In order to compare our approach to those previously
reported, another mixed strategy was considered (Bertolini
etal., 2015). In particular, PCA and RF was used to discover a
new SNP panel able to discriminate among the breeds For
each autosome, the top 20 SNPs were selected and merged
together, leading to a final panel of 520 markers. Random
forest based on the selected 520 SNPs were built on the test
population. The mean decrease in the Gini index (MDGI) or
the mean accuracy decrease (MAD) were used in order to
select the most discriminant SNPs. Four different SNP panels
were created selecting the first 48 and 96 SNPs from the
MDGI and the first 48 and 96 from the MAD, respectively.
This SNP panels’ size was chosen considering the practical
possibilities to develop multiplex SNP panels containing a
reduced number of SNPs for field applications (Bertolini
et al., 2015). For each of the four reduced panels, a new RF
was fitted and the corresponding out-of-bag (OOB) error rate
was calculated. Classification performance of these four RFs
was assessed also using the validation population.

A simulation study has been done to compare the perfor-
mance of our proposed strategy and the PCA-RF strategy.
A group of genetic variants has been randomly generated by
using the real data set. In general, we sampled with repla-
cement n observations of the real data set, so to maintain the
same structure and association between SNPs. Moreover, we
built Xiest which is the simulated test population and X,
which is the simulated validation population (15% of the
sample size). The response variable y was the label vector of
length n, indicating the membership of each animal to their
own breed in the simulated data. Xest and X5 were used to
evaluate the out-of-bag error and misclassification error rate
for both strategies.

Results

Penalized multinomial regression and stability selection
Out of a total of 54 241 genotyped SNPs, 378 unmapped and
1450 were located on sex chromosomes. Thus, 52 413 SNPs
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Figure 1 Plot of the first three principal components obtained using the panel of 48 single nucleotide polymorphisms (coded as genotype), selected after
the first step with the penalized multinomial regression and stability selection procedure. @ =Valle del Belice (VdB), = Comisana (Com), @ = Pinzirita

(Pin), @ = Barbaresca (Bar), @ = Sarda (Sar).

mapped onto 26 sheep autosomes were used, and after
filtering (see Material and Methods), the final number of
common SNPs was 48 068. On these SNPs, PMR and SS pro-
cedure, with B="500, have been performed to select the most
informative markers obtaining a final small set of 48 SNPs.

Figure 1 shows the 201 animals of the test population in
the subspace defined by the first three principal components
calculated on these 48 SNPs. A plot of the 201 animals of the
test population in the subspace defined by the first three
principal components calculated on 48 068 SNPs is shown in
Supplementary Material Figure S1. This allowed an assess-
ment of whether the reduced SNP panel leads to loss of
important genetic information which is relevant to explain
the differences among breeds. Figure 1 shows partial over-
laps of historically and phylogenetically related breeds
(Mastrangelo et al,, 2012 and 2014; Tolone et al., 2012) and
the difficulty in separating them. To analyse the structure of
each cluster, we used the standard deviations as a measure
of spread within each breed in the first three principal com-
ponents. We observed a standard deviation average of about
0.65 for each principal component. Using this SNP panel, the
corresponding misclassification error rate both for test and
validation population was equal to 0%.

The unsupervised strategy which consists of the combi-
nation of PCA and k-means also provide excellent results.
Using the first 15 principal components, which are highly
correlated (>0.50) with 31 SNPs, and explaining 70% of
total variability, we miss only one individual to perfectly
discriminate the five breeds involved in the study. A cluster
plot is shown in Supplementary Material Figure S2.

Moreover, using the whole set of SNPs and applying the
same unsupervised strategy we again missed only one indi-
vidual. In this case, 112 principal components, which are
highly correlated (>0.50) with 608 SNPs, are used in the
k-means step.

Table 1 Simulation results of accuracy for classification both in test
and validation population (based on 500 runs) after randomly sampled
different number of single nucleotide polymorphisms from the
whole set

p Average % test Average % val Kruskal-Wallis test P-values

48 99.9% 60.6% - -

50 99.9% 63.3% 27.66 <0.0001
100 100% 75.2% 376.50 <0.0001
200 100% 83.1% 254.08 <0.0001
400 100% 87.7% 126.38 <0.0001
800 100% 90.8% 82.10 <0.0001
1600 100% 92.7% 41.67 <0.0001
3200 100% 94.5% 265.60 <0.0001
6400 100% 95.2% 16.63 <0.0001

The last two columns are Kruskal-Wallis test and P values.

Random sampling of single nucleotide polymorphisms

In order to assess the ability of these 48 selected SNPs to
efficiently discriminate among the sheep breeds, a simulation
was performed. Another sets of 48 SNPs were randomly
sampled 500 times from the whole set of SNPs and the
average of accuracy for classification in the validation
population was about 60%. Repeating this procedure, sam-
pling different numbers of SNPs (i.e. 50, 100, 200, 400, 800,
1600, 3200, 6400), the accuracy for classification was tested
using a Kruskal-Wallis rank sum test (Kruskal and
Wallis, 1952), to evaluate if any increment in accuracy was
significant. These results are shown in Table 1.

Figure 2 shows the strength of the selected panel of
48 SNPs to discriminate across all the breeds, and the diffi-
culty to perfectly discriminate among them using a large set
of SNPs. Moreover, the Kruskal-Wallis test results were
significant for each increment after sampling even more SNPs
(Table 1).
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Figure 2 Plot of the mean accuracy to classify among the five breeds after repeating, for different number of single nucleotide polymorphisms (SNPs),
a random sampling procedure from the whole set of available SNPs. Black dot is the accuracy level of the selected 48 SNP panel.

Table 2 Out-of-bag (OOB) errors on the test population and mis-
classification error rates on the validation population for the two single
nucleotide polymorphism panels and the two rankings, mean decrease
in the Gini index (MDGI) and mean accuracy decrease (MAD) and for
the mixed strategy penalized multinomial regression and stability
selection (PMR-SS)

Rankings No. of SNPs 00B Misclassification
MDGI 48 8.21/201 1/35

96 4.08/201 1/35
MAD 48 5.12/201 2/35

9% 5.12/201 1/35
PMR-S5 48 0/201 0/35

Penalized multinomial regression and stability selection v.
principal component analysis and random forest
Penalized multinomial regression and stability selection
procedure is a new strategy used for assigning animals
to a breed. In order to compare our approach with other
previously reported strategies and to test its efficiency in
assigning individuals, PCA and RF strategy (Bertolini
et al., 2015) were also used with the real data. With respect
to the two first ranking SNP panels (MDGI and MAD for 48
and 96 SNPs), the OOB errors in the test population were
4.09% and 2.03%, respectively, while the misclassification
error rates for the validation population were both 2.86%. In
the second ranking, the OOB errors for the test population
were 2.55% for the 48 SNP panel and 2.55% for the 96 SNP
panel, whilst the misclassification error rates are 5.71% and
2.86%, respectively. These results were summarized in
Table 2. Figure 3 shows the distribution of the 48 selected
SNPs along the 26 chromosomes, and the four SNPs
panels obtained through PCA and RF procedure; 15 and 13
SNPs out of 48 are the same as in two 48 rankings MDGI and
MAD, respectively.

To compare PMR-5S and PCA-RF strategies in more depth,
we performed a simulation study. We artificially built,
300 times, test (X and validation (X,) population
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sampling with replacement the observation of the real data
set (X). For each replicate, 0B and misclassification error
rates were calculated according to a new reselected SNP
panel. The results are summarized in Table 3.

Breed assignment

The performance of the selected informative SNP markers in
individual assignment test was evaluated using traditional
genetic statistics such as model-based clustering algorithm
and Wright's fixation index. These analyses were conducted
using the whole set of SNPs (48 068) and the final number of
selected SNPs (48). Results from within population sub-
structure, using admixture analysis and considering a range
of 2 through 10 potential clusters (K), indicated that the most
probable number of inferred populations was K=5. A
graphic representation of the estimated membership coeffi-
cients, using the whole set of SNPs and the final number of
selected SNPs is shown in Figure 4, where model-based
clustering partitioned the genome of each sample into a
predefined number of components. Some breeds tend to
have their own distinct cluster (Bar, Sar and VdB), whereas
other breeds, such as Pin and Com, showed a complex
admixture-like pattern. These results support the findings on
the basis of PCA.

The degree of genetic differentiation between pairs of
breeds is reported in Table 4. The highest F; value, for bath
SNPs panels, is seen between Bar and Sar and the lowest
value was for Com v. Pin. Based upon the reference popu-
lation, the average pairwise breeds £ showed a higher value
using the 48 SNPs, confirming the ability of this method to
select discriminating markers.

Discussion

The aim of this study was to apply a new strategy to identify
the minimum number of informative SNPs from high-
throughput genotyping data in sheep breeds reared in Sicily
and to investigate their usefulness for breed assignment
purposes. Generally, the selection of genetic markers useful
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Figure 3 Chromosome distribution of the single nucleotide polymorphisms (SNPs) selected according to the proposed strategy, penalized multinomial
regression and stability selection (PMR-SS), and whom according the two panels of mean decrease in the Gini index (MDGI) and the two panels of mean

accuracy decrease (MAD).

Table 3 Out-of-bag (O0B%) error and misclassification error rate
(MER%) on the test and validation population for both strategies,
penalized multinomial regression and stability selection and principal
component analysis-random forest

MDGI 48  MDGI 96

MAD 48  MAD 96 PMR-SS 48

00B% 1.63 (0.81) 1.29 (0.80) 1.49 (0.77) 1.25 (0.83) 0.00 (0.00)
MER% 2.11 (2.60) 1.49 (1.89) 1.91 (2.49) 1.49 (1.97) 1.46 (1.82)

MDGl=mean decrease in the Gini index; MAD =mean accuracy decrease;
PMR-SS = penalized multinomial regression and stability selection.
Between brackets standard deviations. Results based on 300 simulation runs.

for these purposes is based on two approaches: a determi-
nistic one, in which markers with different allelic variants
fixed in the compared breeds are used, and the probabilistic
one, in which selected markers present typical allelic
frequencies in different breeds (Negrini et al., 2009).
Several strategies have been already proposed to identify
breed-informative SNPs derived from high-throughput geno-
typing platforms. These systems usually include a first step in
which SNPs are preselected and a second step in which dif-
ferent assignment methods are applied (Bertolini et al,
2015). For example, Allen et al. (2010) in a study on Irish
cattle, reported a set of 43 SNPs for breed identification on
the basis of allele frequency. Heaton et al. (2014) identified
163 SNPs for use in parentage testing and traceability in
sheep, using the minor allele frequency (>0.3). In
Mastrangelo et al. (2014), a subset of 119 SNPs was tested to
evaluate their ability to assign individuals to the same groups
that have been used in the present study. These SNPs were
selected according to their informativeness in breed pair
comparisons meaning SNPs with the largest allele frequency
differences between pairs of breeds were chosen (fixed
alleles in one breed and MAF > 0.25 in the other ones).
Principal component analysis and k-means using this subset
of SNPs showed a lack of ability to discriminate among the
breeds and the presence of overlapped areas. Recently,

Dimauro et al. (2015) using three complementary multi-
variate statistical techniques (discriminant analysis) and
using two reduced pools of 110 and 108 SNPs, respectively,
obtained a separation among divergent sheep breeds.

In this paper, supervised approaches, penalized multi-
nomial regression and stability selection procedures were
applied to identify the minimum number of informative SNPs
from high-throughput genotyping data and these were used
as a classification method for unknown samples. The method
proposed in the present work differs from other studies due
to the statistical technique used to reduce the number of
SNPs. The main result was the selection of 48 SNPs from a
whole set of 48068 and these contained sufficient genetic
information to produce sufficient power for individuals’
breed assignment, using a relatively low number of indivi-
duals for breed and closely related breeds. The majority of
the SNPs are in non-coding/intergenic regions of the sheep
genome (Supplementary Material Table S1) which is ideal for
identification and assignment purpose since these regions/
SNPs should be less influenced by natural or artificial selec-
tion (Allen et al,, 2010).

The study proved that the combination of these methods
allowed efficient discrimination between individuals of the
studied breeds. Of course, the 48 identified SNPs were useful
to discriminate among all the sheep breeds under study and
these markers are probably not useful to discriminate among
other sheep breeds. However, this strategy could be easily
reproduced to discriminate among other breeds. Wilkinson
etal. (2011) reported poor assignment power for breeds with
low sample size and closely related individuals, showing that
closely related breeds require about 200 markers to
achieve >95% assignment success. Bertolini et al. (2017) ina
study on cosmopolitan and autochthonous cattle breeds
showed that a 96 SNP panel was generally more able to
discriminate all breeds, whereas for the 48 SNP panel, the
error rate increased mainly for autochthonous breeds, prob-
ably as a consequence of their admixed origin, lower selection
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Figure 4 Model-based clustering of the five sheep breeds analysed for the most likely clusters (K=5), using (a) the whole set of single nucleotide

polymorphisms (SNPs; 48 068) and (b) the final number of selected SNPs (48).

Table 4 Population genetic differentiation (Fs; statistic) among the
five sheep breeds using the whole set of single nucleotide poly-
morphisms (SNPs; 48 068) (above diagonal) and the final number of
selected SNPs (48) (below diagonal)

VdB Com Pin Bar Sar
vdB 0 0.05 0.04 0.10 0.07
Com 0.24 0 0.02 0.08 0.06
Pin 0.26 0.18 0 0.07 0.04
Bar 0.43 0.37 0.30 0 0.1
Sar 0.31 0.31 0.25 0.42 0

VdB=Valle del Belice; Com=Comisana; Pin=Pinzirita; Bar=Barbaresca;
Sar =Sarda.

pressure and by ascertaining bias in the construction of the SNP
chip. In fact, where there is sufficient genetic heterogeneity
among populations, a few genetic markers can be easily used
to identify and verify the origin of individuals, whereas it
becomes more complicated for population with low genetic
differentiation, such as the sheep breeds involved in this study
(Mastrangelo et al,, 2012; Tolone et al., 2012). It is well known
that a high number of genotyped animals can capture the
whole within population variability reducing the possibility that
some individuals would not be assigned correctly due to
atypical genotypes (Hulsegge et al, 2013). Considering the
high level of admixture among these sheep breeds
(Mastrangelo et al, 2017), and the relative low number of
analysed individuals, our study reported relevant results. A
good separation among breeds was still obtained with high
percentages of correct assignment. The applicability of reduced
SNP panels with low dlassification error rate is therefore sill
possible also for local breeds in which the total or partial lack of
selection programs have not shaped the genome as it might be
the case for cosmopolite breeds.

The combined use of PCA and RF proposed by Bertolini
et al. (2015), and applied to our sheep breeds, highlights
difficulties to discriminate among them, even when using
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two different panels of 48 and 96 SNPs. The simulation
results have also highlighted that the proposed strategy
performed slightly better than PCA-RF strategy, as did the
results in the real application. Therefore, the proposed
strategy could provide a new tool to get over problems in
which breeds are phylogenetically close.

The results reported using independent analyses, such as
the model-based clustering algorithm implemented in
admixture software (Alexander and Lange, 2011) and
Fi confirmed the ability of this method in selecting
discriminating markers. The reduced SNP panel captured a
large proportion of genetic variation between the dairy sheep
breeds with estimates of F; exceeding those previously
reported using microsatellites (Tolone et al,, 2012) and SNPs
(Mastrangelo et al.,, 2014). Moreover, a previous study on
Sicilian sheep breeds (Tolone et al, 2012) using a set of
20 microsatellites, reported that the Bayesian assignment
test showed a low assignment value for these breeds, and
the low robustness of the assignment test made it infeasible
for traceability purposes.

Validation analyses will be conducted on the
identified SNPs using a wider sample of individuals and other
laboratory assay, for example Sanger sequencing. Finally, a
multiplexed genotyping-by-sequence assay will be devel-
oped highlighting the economic advantage on the use of
reduced SNP panels, compared with dense genome-
wide assay, for routine use in the management of local
populations.

Conclusions

Results for assignment test using the mixed strategy were
interesting, because 100% of the individuals were correctly
assigned to their breeds of origin. Using genotypic data, a
small set of SNPs was identified. The results laid the basis to
improve the proposed strategy for the potential use of it to
generate panels that may be used for breed assignment or



within an industrial setting for tracing the origin of animal
products derived from the five breeds involved in the study.
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