The need for massive content delivery is a consolidated trend in mobile communications, and will even increase for next years. Moreover, while 4G maturity and evolution is driven by video contents, next generation (5G) networks will be dominated by heterogeneous data and additional massive diffusion of Internet of Things (IoT). The current network architecture is not sufficient to cope with such traffic, which is heterogeneous in terms of latency and QoS requirements, and variable in space and time. This paper proposes architectural advances to endow the network with the necessary flexibility helping to adapt to these varying traffic needs by providing content and communication services where and when actually needed. Our functional hardware/software (HW/SW) architecture aims at influencing future system standardization and leverage the benefits of some key 5G networking enablers described in the paper. Preliminary results demonstrate the potential of these key technologies to support the evolution toward content-centric and context-aware 5G systems.
D. Sabella, P. (2017). A flexible and reconfigurable 5G networking architecture based on context and content information. In EuCNC 2017 - European Conference on Networks and Communications [10.1109/EuCNC.2017.7980669].
A flexible and reconfigurable 5G networking architecture based on context and content information
TINNIRELLO, Ilenia;GIULIANO, Fabrizio;GARLISI, Domenico;
2017-01-01
Abstract
The need for massive content delivery is a consolidated trend in mobile communications, and will even increase for next years. Moreover, while 4G maturity and evolution is driven by video contents, next generation (5G) networks will be dominated by heterogeneous data and additional massive diffusion of Internet of Things (IoT). The current network architecture is not sufficient to cope with such traffic, which is heterogeneous in terms of latency and QoS requirements, and variable in space and time. This paper proposes architectural advances to endow the network with the necessary flexibility helping to adapt to these varying traffic needs by providing content and communication services where and when actually needed. Our functional hardware/software (HW/SW) architecture aims at influencing future system standardization and leverage the benefits of some key 5G networking enablers described in the paper. Preliminary results demonstrate the potential of these key technologies to support the evolution toward content-centric and context-aware 5G systems.File | Dimensione | Formato | |
---|---|---|---|
07980669.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
781.54 kB
Formato
Adobe PDF
|
781.54 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.