In this paper, we formally derive the thin spray equation for a steady Stokes gas (i.e. the equation consists in a coupling between a kinetic -Vlasov type- equation for the dispersed phase and a -steady- Stokes equation for the gas). Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard-Desvillettes-Golse-Ricci, Commun.Math.Sci, in press] where the evolution of the gas is governed by the Navier-Stokes equation.

Bernard, E., Desvillettes, L., Golse, F., Ricci, V. (2017). A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. KINETIC AND RELATED MODELS, 11(1), 43-69 [10.3934/krm.2018003].

A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures

RICCI, Valeria
2017-01-01

Abstract

In this paper, we formally derive the thin spray equation for a steady Stokes gas (i.e. the equation consists in a coupling between a kinetic -Vlasov type- equation for the dispersed phase and a -steady- Stokes equation for the gas). Our starting point is a system of Boltzmann equations for a binary gas mixture. The derivation follows the procedure already outlined in [Bernard-Desvillettes-Golse-Ricci, Commun.Math.Sci, in press] where the evolution of the gas is governed by the Navier-Stokes equation.
2017
Bernard, E., Desvillettes, L., Golse, F., Ricci, V. (2017). A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. KINETIC AND RELATED MODELS, 11(1), 43-69 [10.3934/krm.2018003].
File in questo prodotto:
File Dimensione Formato  
A_DERIVATION_OF_THE_VLASOV_STOKES_SYSTEM_FOR_AEROSOL_FLOWS_FROM_THE_KINETIC_THEORY_OF_BINARY_GAS_MIXTURES.pdf

Solo gestori archvio

Descrizione: articolo
Tipologia: Versione Editoriale
Dimensione 459.66 kB
Formato Adobe PDF
459.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
231247_Ricci_.pdf

accesso aperto

Tipologia: Post-print
Dimensione 318.22 kB
Formato Adobe PDF
318.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/231247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact