We study the integrability of Banach valued strongly measurable functions defined on [0, 1]. In case of functions f given by P∞ n=1 xnχEn , where xn belong to a Banach space and the sets En are Lebesgue measurable and pairwise disjoint subsets of [0, 1], there are well known characterizations for the Bochner and for the Pettis integrability of f (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.

BONGIORNO B, DI PIAZZA L, MUSIAL K (2006). Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions. MATHEMATICA BOHEMICA, 131(2), 211-223.

Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions

BONGIORNO, Benedetto;DI PIAZZA, Luisa;
2006-01-01

Abstract

We study the integrability of Banach valued strongly measurable functions defined on [0, 1]. In case of functions f given by P∞ n=1 xnχEn , where xn belong to a Banach space and the sets En are Lebesgue measurable and pairwise disjoint subsets of [0, 1], there are well known characterizations for the Bochner and for the Pettis integrability of f (cf Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability of such functions.
2006
BONGIORNO B, DI PIAZZA L, MUSIAL K (2006). Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrability of strongly measurable functions. MATHEMATICA BOHEMICA, 131(2), 211-223.
File in questo prodotto:
File Dimensione Formato  
MathBohem_131-2006-2_7.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 338.5 kB
Formato Adobe PDF
338.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/21564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact