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Dedicated to Prof. J.Kurzweil on the occasion of his 80th birthday

Abstract. We study the integrability of Banach valued strongly measurable functions

defined on [0, 1]. In case of functions f given by
∞∑

n=1
xnχEn

, where xn belong to a Banach

space and the sets En are Lebesgue measurable and pairwise disjoint subsets of [0, 1], there
are well known characterizations for the Bochner and for the Pettis integrability of f (cf
Musial (1991)). In this paper we give some conditions for the Kurzweil-Henstock and the
Kurzweil-Henstock-Pettis integrability of such functions.
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1. Introduction

In this paper we study the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis
integrability of strongly measurable functions. It is well known (cf [7, Lemma 5.1])

that each strongly measurable Banach valued function, defined on a measurable

space, can be written as f = g+
∞∑

n=1
xnχEn , where g is a bounded strongly measurable

function, xn are vectors of the given Banach space and En are measurable and
pairwise disjoint sets. As each bounded strongly measurable function is Bochner

integrable, it is enough to study the integrability only for functions of the form
∞∑

n=1
xnχEn . In the case of the Bochner and Pettis integrals, a necessary and sufficient

condition for the integrability of a function given by
∞∑

n=1
xnχEn is, respectively, the

211



absolute and the unconditional convergence of the series
∞∑

n=1
xn|En| (see Theorem A).

In the case of the Kurzweil-Henstock or of the Kurzweil-Henstock-Pettis integrability,

in general the series
∞∑

n=1
xn|En| is only conditionally convergent. So the conditions for

the integrability depend on the order of the terms xn|En|. We present one sufficient
condition for the Kurzweil-Henstock and the Kurzweil-Henstock-Pettis integrability
of such functions.

2. Basic facts

Let [0, 1] be the unit interval of the real line equipped with the usual topology
and the Lebesgue measure. If a set E ⊂ [0, 1] is Lebesgue measurable, then |E|
denotes its Lebesgue measure. I denotes the family of all closed subintervals of
[0, 1]. A partition in [0, 1] is a finite collection of pairs P = {(I1, t1), . . . , (Ip, tp)},
where I1, . . . , Ip are nonoverlapping subintervals of [0, 1] and ti ∈ Ii, i = 1, . . . , p. If
p⋃

i=1

Ii = [0, 1] we say that P is a partition of [0, 1]. Given a subset E of [0, 1], we say

that the partition P is anchored on E if ti ∈ E for each i = 1, . . . , p. A gauge on

E ⊂ [0, 1] is a positive function on E. For a given gauge δ, we say that a partition
{(I1, t1), . . . , (Ip, tp)} is δ-fine if Ii ⊂ (ti − δ(xi), ti + δ(xi)), i = 1, . . . , p.

Throughout this paper X is a Banach space with the dual X∗. The closed unit
ball of X∗ is denoted by B(X∗).

Definition 1. A function f : [0, 1] → X is said to be Kurzweil-Henstock in-
tegrable, or simply KH-integrable, on [0, 1] if there exists w ∈ X with the following

property: for every ε > 0 there exists a gauge δ on [0, 1] such that

∥∥∥∥
p∑

i=1

f(ti)|Ii| − w

∥∥∥∥ < ε

for each δ-fine partition {(I1, t1), . . . , (Ip, tp)} of [0, 1]. We set w =: (KH)
∫ 1

0
f .

We denote the set of all KH-integrable functions f : [0, 1] → X by KH([0, 1], X).
The space KH([0, 1], X) is endowed with the Alexiewicz norm (cf. [1])

‖f‖A = sup
0<α61

∥∥∥∥(KH)
∫ α

0

f(t) dt

∥∥∥∥.

A family A ⊂ KH([0, 1], X) is said to be Kurzweil-Henstock equiintegrable, or
simply KH-equiintegrable, on [0, 1] if in Definition 1, for every ε > 0 there exists a
gauge δ on [0, 1] which works for all the functions in A.
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A function f : [0, 1] → X is said to be scalarly Kurzweil-Henstock integrable, or

simply scalarly KH-integrable, if for each x∗ ∈ X∗, the function x∗f is Kurzweil-
Henstock integrable on [0, 1].

Definition 2. A scalarly KH-integrable function f : [0, 1] → X is said to be

Kurzweil-Henstock-Dunford integrable or simply KHD-integrable, if, for each non-
empty interval [a, b] ⊂ [0, 1], there exists a vector wab ∈ X∗∗ such that for every

x∗ ∈ X∗

(1) 〈x∗, wab〉 = (KH)
∫ b

a

x∗f(t) dt.

It follows from [5, Theorem 3] that a function f : [0, 1] → X is KHD-integrable if
and only if f is scalarly KH-integrable.
The generalization of the Pettis integral obtained by replacing the Lebesgue in-

tegrability of the functions by the Kurzweil-Henstock integrability produces the

Kurzweil-Henstock-Pettis integral (for the definition of the Pettis integral see [3]).

Definition 3. If a function f : [0, 1] → X is scalarly KH-integrable and for
each subinterval [a, b] of [0, 1] and for each x∗ ∈ X∗ there exists a vector w[a,b] ∈ X

such that x∗w[a,b] = (KH)
∫ b

a
〈x∗, f〉, then f is said to be Kurzweil-Henstock-Pettis

integrable, or simply KHP-integrable, on [0, 1] and we set w[a,b] =: (KHP)
∫ b

a f .

We recall that a function f : [0, 1] → X is said to be strongly measurable if there is
a sequence of simple functions fn with lim

n
‖fn(t)−f(t)‖ = 0 for almost all t ∈ [0, 1].

3. Integration of strongly measurable function

The aim of this section is to give conditions for the Kurzweil-Henstock or the
Kurzweil-Henstock-Pettis integrability of strongly measurable functions.

We start by recalling the following simple lemma (cf. Lemma 5.1 of [7]).

Lemma 1. If f : [0, 1] → X is strongly measurable, then there exists a bounded

strongly measurable function g : [0, 1] → X such that f = g +
∞∑

n=1
xnχEn where

xn ∈ X and the sets En are Lebesgue measurable and pairwise disjoint.

Since each bounded strongly measurable function is Bochner integrable, and
then Kurzweil-Henstock (and Kurzweil-Henstock-Pettis) integrable (see e.g. [4]), it

is enough to give criteria of integrability only for functions of the form
∞∑

n=1
xnχEn ,

where xn ∈ X and the sets En are measurable and pairwise disjoint.
For the Bochner and Pettis integrals we have the following classical result:
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Theorem A (cf [7]). Let f =
∞∑

n=1
xnχEn , where xn ∈ X and the sets En are

Lebesgue measurable and pairwise disjoint subsets of [0, 1]. Then

(i) f is Pettis integrable if and only if the series
∞∑

n=1
xn|En| is unconditionally

convergent;

(ii) f is Bochner integrable if and only if the series
∞∑

n=1
xn|En| is absolutely conver-

gent.

In both cases
∫

E
f =

∞∑
n=1

xn|En ∩ E| for every measurable set E.

Here we would like to give similar conditions for the Kurzweil-Henstock and
Kurzweil-Henstock-Pettis integrals.

Theorem 1. Let f : [0, 1] → X be defined by f =
∞∑

n=1
xnχEn , where xn ∈ X

and the sets En are Lebesgue measurable and pairwise disjoint. Assume that the

following condition is satisfied:

(A) for every ε > 0 there exist a gauge δ and k0 ∈
�
such that given a δ-fine partition

{(I1, t1), . . . , (Ip, tp)} of [0, 1] and given s > r > k0 we have

(2)

∥∥∥∥
s∑

k=r

xk

∣∣∣
⋃

tj∈Ek

Ij

∣∣∣
∥∥∥∥ < ε.

Then f is Kurzweil-Henstock integrable with

(3) (KH)
∫

I

f(t) dt =
∞∑

n=1

xn|En ∩ I |

for every interval I ∈ I.
���������

. Let ε > 0 be arbitrary and let δ and k0 be respectively a gauge and
a natural number such that inequality (2) is satisfied. We are going to prove first

that the series
∞∑

n=1
xn|En ∩ I | is convergent for every I ∈ I. To this purpose we set

fm =
m∑

n=1
xnχEn for every m ∈ � , and observe that each function fm is Bochner,

and hence also Kurzweil-Henstock integrable, with its integral equal to
m∑

k=1

xk|Ek|.
Now let s > r > k0 and, according to Definition 1, let δr−1 and δs be two gauges
related to fr−1 and fs respectively, such that

∥∥∥∥
r−1∑

k=1

xk |Ek| −
p∑

i=1

fr−1(ti)|Ii|
∥∥∥∥ < ε
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and
∥∥∥∥

s∑

k=1

xk |Ek| −
p∑

i=1

fs(ti)|Ii|
∥∥∥∥ < ε

for each partition {(I1, t1), . . . , (Ip, tp)} of [0, 1] which is both δr−1-fine and δs-

fine. Now define δ∗(t) = min{δ(t), δr−1(t), δs(t)} and take any δ∗-fine partition
{(I1, t1), . . . , (Ip, tp)} of [0, 1].

Then

∥∥∥∥
s∑

k=r

xk|Ek|
∥∥∥∥ =

∥∥∥∥
s∑

k=1

xk|Ek| −
r−1∑

k=1

xk |Ek|
∥∥∥∥(4)

6
∥∥∥∥

s∑

k=1

xk|Ek| −
p∑

i=1

fs(ti)|Ii|
∥∥∥∥

+
∥∥∥∥

r−1∑

k=1

xk |Ek| −
p∑

i=1

fr−1(ti)|Ii|
∥∥∥∥ +

∥∥∥∥
s∑

k=r

xk

∣∣∣
⋃

ti∈Ek

Ii

∣∣∣
∥∥∥∥ < 3ε.

This proves that the series
∞∑

n=1
xn|En| is norm convergent.

Now for each i ∈ � let Ki be a closed set and Ui an open set such that:

(s1) Ki ⊆ Ei ⊆ Ui;

(s2) |Ui \Ki| < 2−iε/(‖xi‖+ 1);

(s3) if j < i, then Ui ∩Kj = ∅;
(s4) if i 6 k0, then

Ui ∩
⋃

k0>j 6=i

Kj = ∅.

It follows from (s3)–(s4) that if {(I1, t1), . . . , (Ip, tp)} is a δ-fine partition of [0, 1],
then Kn ⊂ ⋃

ti∈En

Ii for every n 6 k0.

The functions f1, f2, . . . , fk0 are Bochner, and hence also Kurzweil-Henstock inte-
grable on [0, 1]. Let γ(t) be a gauge on [0, 1] such that

∥∥∥∥
m∑

k=1

xk|Ek| −
p∑

i=1

fm(ti)|Ii|
∥∥∥∥ < ε

for each γ-fine partition {(I1, t1), . . . , (Ip, tp)} of [0, 1] and for m = 1, 2, . . . , k0.
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Define δ0(t) = min{dist(t, U c
i ), δ(t), γ(t)} if t ∈ Ei and let {(I1, t1), . . . , (Ip, tp)} be

a δ0-fine partition of [0, 1]. For each m > k0, by (2)–(4) we get

∥∥∥∥
m∑

k=1

xk|Ek | −
p∑

i=1

fm(ti)|Ii|
∥∥∥∥ 6

∥∥∥∥
k0∑

k=1

xk(|Ek| −
∑

ti∈Ek

|Ii|)
∥∥∥∥

+
∥∥∥∥

m∑

k=k0+1

xk

∣∣∣
⋃

ti∈Ek

Ii

∣∣∣
∥∥∥∥ +

∥∥∥∥
m∑

k=k0+1

xk|Ek|
∥∥∥∥

<

k0∑

k=1

‖xk‖
∣∣∣ |Ek| −

∣∣∣
⋃

ti∈Ek

Ii

∣∣∣
∣∣∣ + 4ε 6

k0∑

k=1

‖xk‖ |Uk \Kk|+ 4ε

< 2ε

k0∑

k=1

‖xk‖
2k(‖xk‖+ 1)

+ 4ε < 6ε.

Thus, the sequence (fm) is Kurzweil-Henstock equiintegrable. Moreover, since
lim

m→∞
fm(t) = f(t) in [0, 1], by [8, Theorem 1] f is Kurzweil-Henstock integrable and

(fm) converges to f in the Alexiewicz topology. So, in particular, for each I ∈ I we
have

(KH)
∫

I

f(t) dt = lim
n

(KH)
∫

I

fn(t) dt,

and the assertion follows. �
	�
�������

1. Within the proof of the previous theorem it is also showed that

condition (A) implies the Kurzweil-Henstock equiintegrability of the sequence (fm).
It is easy to check that the same proof can be used to prove the reverse implication.

So we have also:
If the sequence (fm =

m∑
k=1

xkχEk
) is Kurzweil-Henstock equiintegrable, then the

function f =
∞∑

n=1
xnχEn is Kurzweil-Henstock integrable and

(KH)
∫

I

f(t) dt =
∞∑

n=1

xn|En ∩ I |

for every interval I ∈ I.
	�
�������

2. There exist points xn ∈ X and pairwise disjoint Lebesgue measur-

able sets En, n = 1, 2, . . . , such that the series
∞∑

n=1
xn|En ∩ I | is convergent for every

I ∈ I, the function f =
∞∑

n=1
xnχEn is Kurzweil-Henstock integrable and

(KH)
∫ 1

0

f(t) dt 6=
∞∑

n=1

xn|En|.
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���������
. Let π be a permutation of

�
such that the series

∞∑

n=1

(−1)π(n)[π(n) + 1]
( 1

π(n)
− 1

π(n) + 1

)
=

∞∑

n=1

(−1)π(n)

π(n)

is convergent but
∞∑

n=1

(−1)π(n)

π(n)
6=

∞∑

n=1

(−1)n

n
.

Let

(5) f =
∞∑

n=1

(−1)π(n)[π(n) + 1]χ[1/[π(n)+1],1/π(n)).

Remark that the function f can be written also in the form

f =
∞∑

n=1

(−1)n(n + 1)χ[1/(n+1),1/n).

Since the function f is Riemann improper integrable on [0, 1], then it is Kurzweil-
Henstock integrable, with

(KH)
∫ 1

0

f(t) dt =
∞∑

n=1

(−1)n

n
.

Note that the series

∞∑

n=1

(−1)π(n)[π(n) + 1]
∣∣∣I ∩

[ 1
π(n) + 1

,
1

π(n)

)∣∣∣

is convergent, but

(KH)
∫ 1

0

f(t) dt 6=
∞∑

n=1

(−1)π(n)

π(n)
.

�
	�
�������

3. It follows from Remark 2 that condition (A) of Theorem 1 is not

necessary for the KH-integrability of a function f given by
∞∑

n=1
xnχEn , with xn ∈ X

and En pairwise disjoint Lebesgue measurable sets.

However, there are cases in which the convergence of the series
∞∑

n=1

xn|En| implies

the Kurzweil-Henstock integrability of the function f =
∞∑

n=1
xnχEn and the equality

(3) holds.
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Proposition 1. Let (an) be a decreasing sequence converging to zero such that

a1 = 1, and let f : [0, 1] → X be defined by f =
∞∑

n=1
xnχEn , where xn ∈ X and En =

[an+1, an). If the series
∞∑

n=1
xn|En| is convergent, then condition (A) of Theorem 1

is satisfied.

���������
. Let ε > 0 be given, and let k0 be a natural number such that

(6)

∥∥∥∥
∞∑

n=r

xn|En|
∥∥∥∥ <

ε

5
and ‖xr‖|Er| <

ε

5
,

for every r > k0. Now we define a gauge δ on [0, 1] in the following way:
δ(0) = ak0 ,

δ(x) = dist(x, Ec
n) if x ∈ E0

n (the interior of En),

δ(an) = 1
5 min{2−nε/(‖xn−1‖+ ‖xn‖+ 1), dist(an, 0)} for n = 1, 2, . . .

Now let {(I1, t1), . . . , (Ip, tp)} be any δ-fine partition of [0, 1]. By the definition of
δ, the point 0 has to be the tag of one of the pairs of the partition; we may assume
that t1 = 0. Let n̄ be the first natural number such that an̄+1 ∈ I1. By the definition

of δ(0) it follows that an̄+1 < ak0 , hence n̄ > k0. Then

(7)

∣∣∣∣
⋃

tj∈En̄

Ij

∣∣∣∣ 6 |En̄|

and

(8)

∣∣∣∣
⋃

tj∈En

Ij

∣∣∣∣ = 0 for n > n̄.

Hence ∥∥∥∥
∑

n>r

xn

∣∣∣
⋃

tj∈En

Ij

∣∣∣
∥∥∥∥ = 0

for each r > n̄.

Besides, for 1 < n < n̄ we have

(9)

∣∣∣∣
⋃

tj∈En

Ij

∣∣∣∣ = |En|+ ε′nδ(an+1)− ε′′nδ(an)

for suitable ε′n, ε′′n ∈ [0, 1].
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So, for n̄ > r > k0, by (6), (7), (8) and (9) we obtain
∥∥∥∥

∑

n>r

xn

∣∣∣
⋃

tj∈En

Ij

∣∣∣
∥∥∥∥ =

∥∥∥∥xn̄

∣∣∣
⋃

tj∈En̄

Ij

∣∣∣ +
∑

n̄>n>r

xn(|En|+ ε′nδ(an+1)− ε′′nδ(an))
∥∥∥∥

6 ‖xn̄‖|En̄|+
∥∥∥∥

∑

n̄>n>r

xn|En|
∥∥∥∥ +

∑

n̄>n>r

‖xn‖δ(an−1) +
∑

n̄>n>r

‖xn‖δ(an)

6 ε

5
+ 2

ε

5
+

1
5

∑

n>r

ε

2n
+

1
5

∑

n>r

ε

2n
< ε.

This completes the proof. �

Theorem 1 and Proposition 1 yield

Theorem 2. Let f : [0, 1] → X be defined by f =
∞∑

n=1
xnχEn , where xn ∈ X ,

En = [an+1, an) and (an) is a decreasing sequence converging to zero such that

a1 = 1. If the series
∞∑

n=1
xn|En| is convergent, then f is Kurzweil-Henstock integrable

and

(KH)
∫

I

f(t) dt =
∞∑

n=1

xn|En ∩ I |

for every interval I ∈ I.
��� 
������������
�

. Suppose that f is defined like in Theorem 1 and it is KH-
integrable. Does there exist a permutation π of

�
such that

(KH)
∫

I

f(t) dt =
∞∑

n=1

xπ(n)|Eπ(n) ∩ I |

for each I ∈ I?

By applying Theorem 1 the following two results follow:

Theorem 3. Let f : [0, 1] → X be defined by f =
∞∑

n=1
xnχEn , where xn ∈ X and

the sets En are Lebesgue measurable and pairwise disjoint. We assume also that the

following conditions are satisfied:

(a)
∞∑

n=1
xn|En| is weakly convergent;

(b) for every ε > 0 and every x∗ ∈ X∗ there exist a gauge δ and k0 ∈
�
such that

for each δ-fine partition {(I1, t1), . . . , (Ip, tp)} of [0, 1] and each n > m > k0 we

have ∣∣∣∣
n∑

k=m

x∗(xk)
∣∣∣

⋃

tj∈Ek

Ij

∣∣∣
∣∣∣∣ < ε.
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Then f is Kurzweil-Henstock-Pettis integrable and for every I ∈ I and x∗ ∈ X∗

we have

(10) (KH)
∫

I

〈x∗, f(t)〉 dt =
∞∑

n=1

x∗(xn)|En ∩ I |.

Theorem 4. Let f : [0, 1] → X be defined by f =
∞∑

n=1
xnχEn , where xn ∈ X and

the sets En are Lebesgue measurable and pairwise disjoint. We assume also that the

following conditions are satisfied:

(a)
∞∑

n=1
xn|En| is weakly Cauchy;

(b) for every ε > 0 and every x∗ ∈ X∗ there exist a gauge δ and a natural number

k0 such that ∣∣∣∣
n∑

k=m

x∗(xk)
∣∣∣

⋃

tj∈Ek

Ij

∣∣∣
∣∣∣∣ < ε

for each δ-fine partition {(I1, t1), . . . , (Ip, tp)} of [0, 1] and each n > m > k0.

Then f is Kurzweil-Henstock-Dunford integrable and for every I ∈ I and x∗ ∈ X∗

we have

(11) (KH)
∫

I

〈x∗, f(t)〉 dt =
∞∑

n=1

x∗(xn)|En ∩ I |.

Theorem 5. Let f : [0, 1] → X be defined by f =
∞∑

n=1
xnχEn , where xn ∈ X ,

En = [an+1, an) and (an) is a decreasing sequence converging to zero such that

a1 = 1. If the series
∞∑

n=1
xn|En| is weakly convergent, then f is Kurzweil-Henstock-

Pettis integrable and

(KH)
∫

I

x∗f(t) dt =
∞∑

n=1

x∗(xn)|En ∩ I |

for every interval I ∈ I and every x∗ ∈ X∗.

If the series
∞∑

n=1
xn|En| is weak∗-convergent, then f is Kurzweil-Henstock-Dunford

integrable and

(KH)
∫

I

x∗f(t) dt =
∞∑

n=1

x∗(xn)|En ∩ I |

for every interval I ∈ I and every x∗ ∈ X∗.
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We recall that a function G : [0, 1] → � is a KH-primitive if and only if for each
N ⊂ [0, 1] with |N | = 0 and for each ε > 0 there exists a gauge δ in N such that

p∑

i=1

|G(Ii)| < ε

for each δ-fine partition {(I1, t1), . . . , (Ip, tp)} anchored onN . HereG([a, b]) = G(b)−
G(a). In this case the derivative of G exists almost everywhere in [0, 1] and G is the

KH-primitive of G′ (see e.g. [2] and the bibliography there).

Theorem 6. Let f : [0, 1] → X be defined by f =
∞∑

n=1
xnχEn , where xn ∈ X

and the sets En are pairwise disjoint intervals. Then f is Kurzweil-Henstock-Pettis

integrable and

(12) (KHP)
∫

I

f(t) dt =
∞∑

n=1

xn|En ∩ I | for every I ∈ I

if and only if the following conditions are satisfied:

(a)
∞∑

n=1
xn|En ∩ I | is weakly convergent for each I ∈ I;

(b) for every ε > 0, every x∗ ∈ X∗ and every N ⊂ [0, 1] with |N | = 0, there exists
a gauge δ in N such that

(13)

∣∣∣∣
∞∑

n=1

x∗(xn)
∣∣∣En ∩

p⋃

i=1

Ii

∣∣∣
∣∣∣∣ < ε

for each δ-fine partition {(I1, t1), . . . , (Ip, tp)} anchored on N .
���������

. If f is KH-integrable and condition (12) is satisfied, then condition (a)
follows directly from (12). Now we prove condition (b). By hypothesis, for every
x∗ ∈ X∗ the scalar function x∗f is KH-integrable. Set

α(t) = (KH)
∫ t

0

〈x∗, f(s)〉 ds =
∞∑

n=1

x∗(xn)|En ∩ [0, t]|.

Since α(t) is the KH-primitive of x∗f , hence for each N ⊂ [0, 1] with |N | = 0 and
for each ε > 0 there exists a gauge δ on N such that

p∑

i=1

|α(Ii)| < ε

for each δ-fine partition {(I1, t1), . . . , (Ip, tp)} anchored on N .
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Therefore

∣∣∣∣
∞∑

n=1

x∗(xn)
∣∣∣En ∩

p⋃

i=1

Ii

∣∣∣
∣∣∣∣ 6

p∑

i=1

∣∣∣∣
∞∑

n=1

x∗(xn)|En ∩ Ii|
∣∣∣∣ =

p∑

i=1

|α(Ii)| < ε.

Assume now that conditions (a) and (b) are satisfied, and fix x∗ ∈ X∗. By
condition (b), for every ε > 0 and every N ⊂ [0, 1] with |N | = 0, there exists a gauge
δ on N such that inequality (13) holds for each δ-fine partition {(I1, t1), . . . , (Ip, tp)}
anchored on N . Set once again α(t) =

∞∑
n=1

x∗(xn)|En ∩ [0, t]|. Then, by (a) and (13),

we infer

p∑

i=1

|α(Ii)| =
∣∣∣∣
∑

I+

α(Ii)
∣∣∣∣ +

∣∣∣∣
∑

I−

α(Ii)
∣∣∣∣

=
∣∣∣∣
∞∑

n=1

x∗(xn)
∣∣∣En ∩

⋃

I+

Ii

∣∣∣
∣∣∣∣ +

∣∣∣∣
∞∑

n=1

x∗(xn)
∣∣∣En ∩

⋃

I−

Ii

∣∣∣
∣∣∣∣ < 2ε,

where I+ and I− denote the set of all indices i = 1, . . . , p such that α(Ii) is positive
or negative, respectively. Therefore α(t) is a KH-primitive. As the sets En are

intervals, it follows easily that α′(t) =
∞∑

n=1
x∗(xn)χEn almost everywhere in [0, 1].

Then α(t) is the KH-primitive of the function x∗f =
∞∑

n=1

x∗(xn)χEn . Consequently

(KH)
∫ 1

0

〈x∗, f(t)〉 dt =
∞∑

n=1

x∗(xn)|En| =
〈

x∗,
∞∑

n=1

xn|En|
〉

.

Hence the function f is KHP-integrable and (12) holds. �
��� 
� � ��������
�

. Is Theorem 6 still true if the sets En are arbitrary pairwise

disjoint Lebesgue measurable sets?
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